Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
bioRxiv ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37732275

ABSTRACT

Regenerative biomaterials for musculoskeletal defects must address multi-scale mechanical challenges. We are developing biomaterials for craniomaxillofacial bone defects that are often large and irregularly shaped. These require close conformal contact between implant and defect margins to aid healing. While we have identified a mineralized collagen scaffold that promotes mesenchymal stem cell osteogenic differentiation in vitro and bone formation in vivo, its mechanical performance is insufficient for surgical translation. We report a generative design approach to create scaffold-mesh composites by embedding a macro-scale polymeric Voronoi mesh into the mineralized collagen scaffold. The mechanics of architected foam reinforced composites are defined by a rigorous predictive moduli equation. We show biphasic composites localize strain during loading. Further, planar and 3D mesh-scaffold composites can be rapidly shaped to aid conformal fitting. Voronoi-based composites overcome traditional porosity-mechanics relationship limits while enabling rapid shaping of regenerative implants to conformally fit complex defects unique for individual patients.

2.
Acta Biomater ; 172: 249-259, 2023 12.
Article in English | MEDLINE | ID: mdl-37806375

ABSTRACT

Regenerative biomaterials for musculoskeletal defects must address multi-scale mechanical challenges. Repairing craniomaxillofacial bone defects, which are often large and irregularly shaped, requires close conformal contact between implant and defect margins to aid healing. While mineralized collagen scaffolds can promote mesenchymal stem cell osteogenic differentiation in vitro and bone formation in vivo, their mechanical performance is insufficient for surgical translation. We report a generative design approach to create scaffold-mesh composites by embedding a macro-scale polymeric Voronoi mesh into the mineralized collagen scaffold. The mechanics of architected foam reinforced composites are defined by a rigorous predictive moduli equation. We show biphasic composites localize strain during loading. Further, planar and 3D mesh-scaffold composites can be rapidly shaped to aid conformal fitting. Voronoi-based composites overcome traditional porosity-mechanics relationship limits while enabling rapid shaping of regenerative implants to conformally fit complex defects unique for individual patients. STATEMENT OF SIGNIFICANCE: Biomaterial strategies for (craniomaxillofacial) bone regeneration are often limited by the size and complex geometry of the defects. Voronoi structures are open-cell foams with tunable mechanical properties which have primarily been used computationally. We describe generative design strategies to create Voronoi foams via 3D-printing then embed them into an osteogenic mineralized collagen scaffold to form a multi-scale composite biomaterial. Voronoi structures have predictable and tailorable moduli, permit stain localization to defined regions of the composite, and permit conformal fitting to effect margins to aid surgical practicality and improve host-biomaterial interactions. Multi-scale composites based on Voronoi foams represent an adaptable design approach to address significant challenges to large-scale bone repair.


Subject(s)
Biocompatible Materials , Osteogenesis , Humans , Biocompatible Materials/pharmacology , Porosity , Tissue Scaffolds/chemistry , Collagen/chemistry , Printing, Three-Dimensional
3.
Biomaterials ; 289: 121702, 2022 10.
Article in English | MEDLINE | ID: mdl-36041362

ABSTRACT

Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA guidance for medical device manufacture. In this study, we present a generalized strategy for selective laser sintering (SLS) of patient-specific medical devices following the prescribed guidance for additive manufacturing of medical devices issued by the FDA in 2018. We contextualize this process for manufacturing an Airway Support Device, a life-saving tracheal and bronchial implant restoring airway patency for pediatric patients diagnosed with tracheobronchomalacia and exhibiting partial or complete airway collapse. The process covers image-based modeling, design inputs, design verification, material inputs and verification, device verification, and device validation, including clinical results. We demonstrate how design and material assessment lead to verified Airway Support Devices that achieve desired airway patency and reduction in required Positive End-Expiratory Pressure (PEEP) after patient implantation. We propose this process as a template for general quality control of patient-specific, 3D printed implants.


Subject(s)
Bronchi , Trachea , Child , Humans , Printing, Three-Dimensional
4.
J Biomed Mater Res B Appl Biomater ; 109(3): 394-400, 2021 03.
Article in English | MEDLINE | ID: mdl-32830908

ABSTRACT

Auricular reconstruction is a technically demanding procedure requiring significant surgical expertise, as the current gold standard involves hand carving of the costal cartilage into an auricular framework and re-implantation of the tissue. 3D-printing presents a powerful tool that can reduce technical demands associated with the procedure. Our group compared clinical, radiological, histological, and biomechanical outcomes in single- and two-stage 3D-printed auricular tissue scaffolds in an athymic rodent model. Briefly, an external anatomic envelope of a human auricle was created using DICOM computed tomography (CT) images and modified in design to create a two-stage, lock-in-key base and elevating platform. Single- and two-stage scaffolds were 3D-printed by laser sintering poly-L-caprolactone (PCL) then implanted subcutaneously in five athymic rats each. Rats were monitored for ulcer formation, site infection, and scaffold distortion weekly, and scaffolds were explanted at 8 weeks with analysis using microCT and histologic staining. Nonlinear finite element analysis was performed to determine areas of high strain in relation to ulcer formation. Scaffolds demonstrated precise anatomic appearance and maintenance of integrity of both anterior and posterior auricular surfaces and scaffold projection, with no statistically significant differences in complications noted between the single- and two-staged implantation. While minor superficial ulcers occurred most commonly at the lateral and superior helix coincident with finite element predictions of high skin strains, evidence of robust tissue ingrowth and angiogenesis was visible grossly and histologically. This promising preclinical small animal model supports future initiatives for making clinically viable options for an ear tissue scaffold.


Subject(s)
Chondrocytes/metabolism , Ear Cartilage , Plastic Surgery Procedures , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Ear Cartilage/chemistry , Ear Cartilage/metabolism , Rats , Rats, Nude
5.
Ann Biomed Eng ; 49(9): 2579-2589, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34291387

ABSTRACT

Additive manufacturing, or 3D printing, of the bioresorbable polymer [Formula: see text]-polycaprolactone (PCL) is an emerging tissue engineering solution addressing patient specific anatomies. Predictively modeling the mechanical behavior of 3D printed parts comprised of PCL improves the ability to develop patient specific devices that meet design requirements while reducing the testing of extraneous design variants and development time for emergency devices. Predicting mechanical behavior of 3D-printed devices is limited by the variability of effective material moduli that are determined in part by the 3D printing manufacturing process. Powder fusion methods, specifically laser sintering, are known to produce parts with internal porosity ultimately impacting the mechanical performance of printed devices. This study investigates the role of print direction and part size on the material and structural properties of laser sintered PCL parts. Solid PCL cylinders were printed in the XY (perpendicular to laser) and Z direction (parallel to laser), scanned using microcomputed tomography, and mechanically tested under compression. Compositional, structural, and functional properties of the printed parts were evaluated with differential scanning calorimetry, gel permeation chromatography, microcomputed tomography, and mechanical testing. Computational models of printed and scanned cylinders were fit to experimental data to derive effective moduli. Effective moduli were used to predict the mechanical behavior of splints used for emergency repair of severe tracheobronchomalacia. Laser sintering did not cause significant differences in polymer material properties compared to unmanufactured powder. Effective moduli (Eeff) were greater for larger part sizes (p < 0.01) and for parts oriented in the XY direction compared to the Z direction (p < 0.001). These dependencies were congruent with the differences in void volumes associated with the print direction (p < 0.01) and part size (p < 0.01). Finite element models of splint parallel compression tests utilizing the Eeff dependent on print direction and size agreed with experimental closed compression tests of splints. Evaluating the microstructural properties of printed parts and selecting effective moduli for finite element models based on manufacturing parameters allows accurate prediction of device performance. These findings allow testing of a greater number of device design variants in silico to accomodate patient specific anatomies towards providing higher quality parts while lowering overall time and costs of manufacturing and testing.


Subject(s)
Biocompatible Materials , Polyesters , Equipment Design , Finite Element Analysis , Humans , Lasers , Materials Testing , Patient-Specific Modeling , Tissue Engineering
6.
Laryngoscope ; 131(5): 1008-1015, 2021 05.
Article in English | MEDLINE | ID: mdl-33022112

ABSTRACT

OBJECTIVES/HYPOTHESIS: To analyze the use of highly translatable three-dimensional (3D)-printed auricular scaffolds with and without novel cartilage tissue inserts in a rodent model. STUDY DESIGN: Preclinical rodent animal model. METHODS: This prospective study assessed a single-stage 3D-printed auricular bioscaffold with or without porcine cartilage tissue inserts in an athymic rodent model. Digital Imaging and Communications in Medicine computed tomography images of a human auricle were segmented to create an external anatomic envelope filled with orthogonally interconnected spherical pores. Scaffolds with and without tissue inset sites were 3D printed by laser sintering bioresorbable polycaprolactone, then implanted subcutaneously in five rats for each group. RESULTS: Ten athymic rats were studied to a goal of 24 weeks postoperatively. Precise anatomic similarity and scaffold integrity were maintained in both scaffold conditions throughout experimentation with grossly visible tissue ingrowth and angiogenesis upon explantation. Cartilage-seeded scaffolds had relatively lower rates of nonsurgical site complications compared to unseeded scaffolds with relatively increased surgical site ulceration, though neither met statistical significance. Histology revealed robust soft tissue infiltration and vascularization in both seeded and unseeded scaffolds, and demonstrated impressive maintenance of viable cartilage in cartilage-seeded scaffolds. Radiology confirmed soft tissue infiltration in all scaffolds, and biomechanical modeling suggested amelioration of stress in scaffolds implanted with cartilage. CONCLUSIONS: A hybrid approach incorporating cartilage insets into 3D-printed bioscaffolds suggests enhanced clinical and histological outcomes. These data demonstrate the potential to integrate point-of-care tissue engineering techniques into 3D printing to generate alternatives to current reconstructive surgery techniques and avoid the demands of traditional tissue engineering. LEVEL OF EVIDENCE: NA Laryngoscope, 131:1008-1015, 2021.


Subject(s)
Ear Auricle/diagnostic imaging , Ear Cartilage/surgery , Plastic Surgery Procedures/adverse effects , Printing, Three-Dimensional , Surgical Wound Infection/epidemiology , Tissue Scaffolds , Animals , Biopsy , Child , Chondrogenesis , Computer-Aided Design , Costal Cartilage/transplantation , Disease Models, Animal , Ear Auricle/anatomy & histology , Ear Auricle/pathology , Ear Auricle/surgery , Ear Cartilage/anatomy & histology , Ear Cartilage/diagnostic imaging , Ear Cartilage/pathology , Humans , Male , Photography , Polyesters , Prospective Studies , Rats , Plastic Surgery Procedures/instrumentation , Plastic Surgery Procedures/methods , Surgical Wound Infection/etiology , Surgical Wound Infection/pathology , Surgical Wound Infection/prevention & control , Tomography, X-Ray Computed , Transplantation, Autologous/adverse effects , Transplantation, Autologous/instrumentation , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL