ABSTRACT
The intensification of intervention activities against the fatal vector-borne disease gambiense human African trypanosomiasis (gHAT, sleeping sickness) in the last two decades has led to a large decline in the number of annually reported cases. However, while we move closer to achieving the ambitious target of elimination of transmission (EoT) to humans, pockets of infection remain, and it becomes increasingly important to quantitatively assess if different regions are on track for elimination, and where intervention efforts should be focused. We present a previously developed stochastic mathematical model for gHAT in the Democratic Republic of Congo (DRC) and show that this same formulation is able to capture the dynamics of gHAT observed at the health area level (approximately 10,000 people). This analysis was the first time any stochastic gHAT model has been fitted directly to case data and allows us to better quantify the uncertainty in our results. The analysis focuses on utilising a particle filter Markov chain Monte Carlo (MCMC) methodology to fit the model to the data from 16 health areas of Mosango health zone in Kwilu province as a case study. The spatial heterogeneity in cases is reflected in modelling results, where we predict that under the current intervention strategies, the health area of Kinzamba II, which has approximately one third of the health zone's cases, will have the latest expected year for EoT. We find that fitting the analogous deterministic version of the gHAT model using MCMC has substantially faster computation times than fitting the stochastic model using pMCMC, but produces virtually indistinguishable posterior parameterisation. This suggests that expanding health area fitting, to cover more of the DRC, should be done with deterministic fits for efficiency, but with stochastic projections used to capture both the parameter and stochastic variation in case reporting and elimination year estimations.
Subject(s)
Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/epidemiology , Democratic Republic of the Congo/epidemiology , Models, Theoretical , Forecasting , Markov Chains , Trypanosoma brucei gambienseABSTRACT
Gambiense human African trypanosomiasis (gHAT) is a virulent disease declining in burden but still endemic in West and Central Africa. Although it is targeted for elimination of transmission by 2030, there remain numerous questions about the drivers of infection and how these vary geographically. In this study we focus on the Democratic Republic of Congo (DRC), which accounted for 84% of the global case burden in 2016, to explore changes in transmission across the country and elucidate factors which may have contributed to the persistence of disease or success of interventions in different regions. We present a Bayesian fitting methodology, applied to 168 endemic health zones (â¼100,000 population size), which allows for calibration of a mechanistic gHAT model to case data (from the World Health Organization HAT Atlas) in an adaptive and automated framework. It was found that the model needed to capture improvements in passive detection to match observed trends in the data within former Bandundu and Bas Congo provinces indicating these regions have substantially reduced time to detection. Health zones in these provinces generally had longer burn-in periods during fitting due to additional model parameters. Posterior probability distributions were found for a range of fitted parameters in each health zone; these included the basic reproduction number estimates for pre-1998 (R0) which was inferred to be between 1 and 1.14, in line with previous gHAT estimates, with higher median values typically in health zones with more case reporting in the 2000s. Previously, it was not clear whether a fall in active case finding in the period contributed to the declining case numbers. The modelling here accounts for variable screening and suggests that underlying transmission has also reduced greatly-on average 96% in former Equateur, 93% in former Bas Congo and 89% in former Bandundu-Equateur and Bandundu having had the highest case burdens in 2000. This analysis also sets out a framework to enable future predictions for the country.
Subject(s)
Models, Statistical , Trypanosoma brucei gambiense , Trypanosomiasis, African , Bayes Theorem , Computational Biology , Democratic Republic of the Congo/epidemiology , Humans , Models, Biological , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/transmissionABSTRACT
Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishmaniasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.
Subject(s)
COVID-19 , Tropical Medicine , Humans , Neglected Diseases/epidemiology , Pandemics , SARS-CoV-2ABSTRACT
Recent mathematical and statistical modeling of leprosy incidence data provides estimates of the current undiagnosed population and projections of diagnosed cases, as well as ongoing transmission. Furthermore, modeling studies have been used to evaluate the effectiveness of proposed intervention strategies, such as postleprosy exposure prophylaxis and novel diagnostics, relative to current approaches. Such modeling studies have revealed both a slow decline of new cases and a substantial pool of undiagnosed infections. These findings highlight the need for active case detection, particularly targeting leprosy foci, as well as for continued research into innovative accurate, rapid, and cost-effective diagnostics. As leprosy incidence continues to decline, targeted active case detection primarily in foci and connected areas will likely become increasingly important.
Subject(s)
Disease Eradication , Leprosy/diagnosis , Models, Statistical , Models, Theoretical , Humans , Incidence , Leprosy/epidemiology , Leprosy/prevention & control , Leprosy/transmission , PolicyABSTRACT
BACKGROUND: Sleeping sickness (gambiense human African trypanosomiasis, gHAT) is a vector-borne disease targeted for global elimination of transmission (EoT) by 2030. There are, however, unknowns that have the potential to hinder the achievement and measurement of this goal. These include asymptomatic gHAT infections (inclusive of the potential to self-cure or harbour skin-only infections) and whether gHAT infection in animals can contribute to the transmission cycle in humans. METHODS: Using modelling, we explore how cryptic (undetected) transmission impacts the monitoring of progress towards and the achievement of the EoT goal. We have developed gHAT models that include either asymptomatic or animal transmission, and compare these to a baseline gHAT model without either of these transmission routes, to explore the potential role of cryptic infections on the EoT goal. Each model was independently calibrated to five different health zones in the Democratic Republic of the Congo (DRC) using available historical human case data for 2000-2020 (obtained from the World Health Organization's HAT Atlas). We applied a novel Bayesian sequential updating approach for the asymptomatic model to enable us to combine statistical information about this type of transmission from each health zone. RESULTS: Our results suggest that, when matched to past case data, we estimated similar numbers of new human infections between model variants, although human infections were slightly higher in the models with cryptic infections. We simulated the continuation of screen-confirm-and-treat interventions, and found that forward projections from the animal and asymptomatic transmission models produced lower probabilities of EoT than the baseline model; however, cryptic infections did not prevent EoT from being achieved eventually under this approach. CONCLUSIONS: This study is the first to simulate an (as-yet-to-be available) screen-and-treat strategy and found that removing a parasitological confirmation step was predicted to have a more noticeable benefit to transmission reduction under the asymptomatic model compared with the others. Our simulations suggest vector control could greatly impact all transmission routes in all models, although this resource-intensive intervention should be carefully prioritised.
Subject(s)
Disease Eradication , Trypanosomiasis, African , Democratic Republic of the Congo/epidemiology , Trypanosomiasis, African/transmission , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Animals , Humans , Trypanosoma brucei gambiense , Bayes Theorem , Tsetse Flies/parasitologyABSTRACT
Gambiense human African trypanosomiasis (gHAT) is a deadly vector-borne, neglected tropical disease found in West and Central Africa targeted for elimination of transmission (EoT) by 2030. The recent pandemic has illustrated how it can be important to quantify the impact that unplanned disruption to programme activities may have in achieving EoT. We used a previously developed model of gHAT fitted to data from the Democratic Republic of the Congo, the country with the highest global case burden, to explore how interruptions to intervention activities, due to e.g. COVID-19, Ebola or political instability, could impact progress towards EoT and gHAT burden. We simulated transmission and reporting dynamics in 38 regions within Kwilu, Mai Ndombe and Kwango provinces under six interruption scenarios lasting for nine or twenty-one months. Included in the interruption scenarios are the cessation of active screening in all scenarios and a reduction in passive detection rates and a delay or suspension of vector control deployments in some scenarios. Our results indicate that, even under the most extreme 21-month interruption scenario, EoT is not predicted to be delayed by more than one additional year compared to the length of the interruption. If existing vector control deployments continue, we predict no delay in achieving EoT even when both active and passive screening activities are interrupted. If passive screening remains as functional as in 2019, we expect a marginal negative impact on transmission, however this depends on the strength of passive screening in each health zone. We predict a pronounced increase in additional gHAT disease burden (morbidity and mortality) in many health zones if both active and passive screening were interrupted compared to the interruption of active screening alone. The ability to continue existing vector control during medical activity interruption is also predicted to avert a moderate proportion of disease burden.
Subject(s)
COVID-19 , Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/diagnosis , Trypanosoma brucei gambiense , Democratic Republic of the Congo/epidemiologyABSTRACT
Human African trypanosomiasis, caused by the gambiense subspecies of Trypanosoma brucei (gHAT), is a deadly parasitic disease transmitted by tsetse. Partners worldwide have stepped up efforts to eliminate the disease, and the Chadian government has focused on the previously high-prevalence setting of Mandoul. In this study, we evaluate the economic efficiency of the intensified strategy that was put in place in 2014 aimed at interrupting the transmission of gHAT, and we make recommendations on the best way forward based on both epidemiological projections and cost-effectiveness. In our analysis, we use a dynamic transmission model fit to epidemiological data from Mandoul to evaluate the cost-effectiveness of combinations of active screening, improved passive screening (defined as an expansion of the number of health posts capable of screening for gHAT), and vector control activities (the deployment of Tiny Targets to control the tsetse vector). For cost-effectiveness analyses, our primary outcome is disease burden, denominated in disability-adjusted life-years (DALYs), and costs, denominated in 2020 US$. Although active and passive screening have enabled more rapid diagnosis and accessible treatment in Mandoul, the addition of vector control provided good value-for-money (at less than $750/DALY averted) which substantially increased the probability of reaching the 2030 elimination target for gHAT as set by the World Health Organization. Our transmission modelling and economic evaluation suggest that the gains that have been made could be maintained by passive screening. Our analysis speaks to comparative efficiency, and it does not take into account all possible considerations; for instance, any cessation of ongoing active screening should first consider that substantial surveillance activities will be critical to verify the elimination of transmission and to protect against the possible importation of infection from neighbouring endemic foci.
Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Chad/epidemiology , Cost-Benefit Analysis , Trypanosoma brucei gambienseABSTRACT
BACKGROUND: Human African trypanosomiasis is a parasitic disease caused by trypanosomes among which Trypanosoma brucei gambiense is responsible for a chronic form (gHAT) in West and Central Africa. Its elimination as a public health problem (EPHP) was targeted for 2020. Côte d'Ivoire was one of the first countries to be validated by WHO in 2020 and this was particularly challenging as the country still reported around a hundred cases a year in the early 2000s. This article describes the strategies implemented including a mathematical model to evaluate the reporting results and infer progress towards sustainable elimination. METHODS: The control methods used combined both exhaustive and targeted medical screening strategies including the follow-up of seropositive subjects- considered as potential asymptomatic carriers to diagnose and treat cases- as well as vector control to reduce the risk of transmission in the most at-risk areas. A mechanistic model was used to estimate the number of underlying infections and the probability of elimination of transmission (EoT) was met between 2000-2021 in two endemic and two hypo-endemic health districts. RESULTS: Between 2015 and 2019, nine gHAT cases were detected in the two endemic health districts of Bouaflé and Sinfra in which the number of cases/10,000 inhabitants was far below 1, a necessary condition for validating EPHP. Modelling estimated a slow but steady decline in transmission across the health districts, bolstered in the two endemic health districts by the introduction of vector control. The decrease in underlying transmission in all health districts corresponds to a high probability that EoT has already occurred in Côte d'Ivoire. CONCLUSION: This success was achieved through a multi-stakeholder and multidisciplinary one health approach where research has played a major role in adapting tools and strategies to this large epidemiological transition to a very low prevalence. This integrated approach will need to continue to reach the verification of EoT in Côte d'Ivoire targeted by 2025.
Subject(s)
Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/parasitology , Cote d'Ivoire/epidemiology , Trypanosoma brucei gambiense , Communicable Disease Control , Public HealthABSTRACT
Gambiense human African trypanosomiasis (gHAT) has been targeted for elimination of transmission (EoT) to humans by 2030. Whilst this ambitious goal is rapidly approaching, there remain fundamental questions about the presence of non-human animal transmission cycles and their potential role in slowing progress towards, or even preventing, EoT. In this study we focus on the country with the most gHAT disease burden, the Democratic Republic of Congo (DRC), and use mathematical modelling to assess whether animals may contribute to transmission in specific regions, and if so, how their presence could impact the likelihood and timing of EoT. By fitting two model variants-one with, and one without animal transmission-to the human case data from 2000-2016 we estimate model parameters for 158 endemic health zones of the DRC. We evaluate the statistical support for each model variant in each health zone and infer the contribution of animals to overall transmission and how this could impact predicted time to EoT. We conclude that there are 24/158 health zones where there is substantial to decisive statistical support for some animal transmission. However-even in these regions-we estimate that animals would be extremely unlikely to maintain transmission on their own. Animal transmission could hamper progress towards EoT in some settings, with projections under continuing interventions indicating that the number of health zones expected to achieve EoT by 2030 reduces from 68/158 to 61/158 if animal transmission is included in the model. With supplementary vector control (at a modest 60% tsetse reduction) added to medical screening and treatment interventions, the predicted number of health zones meeting the goal increases to 147/158 for the model including animal transmission. This is due to the impact of vector reduction on transmission to and from all hosts.
Subject(s)
Trypanosomiasis, African , Animals , Democratic Republic of the Congo/epidemiology , Forecasting , Humans , Models, Theoretical , Trypanosoma brucei gambiense , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & controlABSTRACT
BACKGROUND: In recent years, a programme of vector control, screening and treatment of gambiense human African trypanosomiasis (gHAT) infections led to a rapid decline in cases in the Mandoul focus of Chad. To represent the biology of transmission between humans and tsetse, we previously developed a mechanistic transmission model, fitted to data between 2000 and 2013 which suggested that transmission was interrupted by 2015. The present study outlines refinements to the model to: (1) Assess whether elimination of transmission has already been achieved despite low-level case reporting; (2) quantify the role of intensified interventions in transmission reduction; and (3) predict the trajectory of gHAT in Mandoul for the next decade under different strategies. METHOD: Our previous gHAT transmission model for Mandoul was updated using human case data (2000-2019) and a series of model refinements. These include how diagnostic specificity is incorporated into the model and improvements to the fitting method (increased variance in observed case reporting and how underreporting and improvements to passive screening are captured). A side-by-side comparison of fitting to case data was performed between the models. RESULTS: We estimated that passive detection rates have increased due to improvements in diagnostic availability in fixed health facilities since 2015, by 2.1-fold for stage 1 detection, and 1.5-fold for stage 2. We find that whilst the diagnostic algorithm for active screening is estimated to be highly specific (95% credible interval (CI) 99.9-100%, Specificity = 99.9%), the high screening and low infection levels mean that some recently reported cases with no parasitological confirmation might be false positives. We also find that the focus-wide tsetse reduction estimated through model fitting (95% CI 96.1-99.6%, Reduction = 99.1%) is comparable to the reduction previously measured by the decline in tsetse catches from monitoring traps. In line with previous results, the model suggests that transmission was interrupted in 2015 due to intensified interventions. CONCLUSIONS: We recommend that additional confirmatory testing is performed in Mandoul to ensure the endgame can be carefully monitored. More specific measurement of cases, would better inform when it is safe to stop active screening and vector control, provided there is a strong passive surveillance system in place.
Subject(s)
Trypanosomiasis, African , Animals , Chad/epidemiology , Humans , Mass Screening , Trypanosoma brucei gambiense , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & controlABSTRACT
Gambiense human African trypanosomiasis (sleeping sickness, gHAT) is a disease targeted for elimination of transmission by 2030. While annual new cases are at a historical minimum, the likelihood of achieving the target is unknown. We utilised modelling to study the impacts of four strategies using currently available interventions, including active and passive screening and vector control, on disease burden and transmission across 168 endemic health zones in the Democratic Republic of the Congo. Median projected years of elimination of transmission show only 98 health zones are on track despite significant reduction in disease burden under medical-only strategies (64 health zones if > 90% certainty required). Blanket coverage with vector control is impractical, but is predicted to reach the target in all heath zones. Utilising projected disease burden under the uniform medical-only strategy, we provide a priority list of health zones for consideration for supplementary vector control alongside medical interventions.
Subject(s)
Trypanosomiasis, African , Democratic Republic of the Congo/epidemiology , Humans , Mass Screening , Probability , Trypanosoma brucei gambiense , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & controlABSTRACT
Gambiense human African trypanosomiasis (gHAT) is marked for elimination of transmission by 2030, but the disease persists in several low-income countries. We couple transmission and health outcomes models to examine the cost-effectiveness of four gHAT elimination strategies in five settings - spanning low- to high-risk - of the Democratic Republic of Congo. Alongside passive screening in fixed health facilities, the strategies include active screening at average or intensified coverage levels, alone or with vector control with a scale-back algorithm when no cases are reported for three consecutive years. In high or moderate-risk settings, costs of gHAT strategies are primarily driven by active screening and, if used, vector control. Due to the cessation of active screening and vector control, most investments (75-80%) are made by 2030 and vector control might be cost-saving while ensuring elimination of transmission. In low-risk settings, costs are driven by passive screening, and minimum-cost strategies consisting of active screening and passive screening lead to elimination of transmission by 2030 with high probability.
Subject(s)
Trypanosomiasis, African , Animals , Cost-Benefit Analysis , Democratic Republic of the Congo/epidemiology , Humans , Mass Screening , Trypanosoma brucei gambiense , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & controlABSTRACT
BACKGROUND: Brazil has the second highest annual number of new leprosy cases. The aim of this study is to formally compare predictions of future new case detection rate (NCDR) trends and the annual probability of NCDR falling below 10/100,000 of four different modelling approaches in four states of Brazil: Rio Grande do Norte, Amazonas, Ceará, Tocantins. METHODS: A linear mixed model, a back-calculation approach, a deterministic compartmental model and an individual-based model were used. All models were fitted to leprosy data obtained from the Brazilian national database (SINAN). First, models were fitted to the data up to 2011, and predictions were made for NCDR for 2012-2014. Second, data up to 2014 were considered and forecasts of NCDR were generated for each year from 2015 to 2040. The resulting distributions of NCDR and the probability of NCDR being below 10/100,000 of the population for each year were then compared between approaches. RESULTS: Each model performed well in model fitting and the short-term forecasting of future NCDR. Long-term forecasting of NCDR and the probability of NCDR falling below 10/100,000 differed between models. All agree that the trend of NCDR will continue to decrease in all states until 2040. Reaching a NCDR of less than 10/100,000 by 2020 was only likely in Rio Grande do Norte. Prediction until 2040 showed that the target was also achieved in Amazonas, while in Ceará and Tocantins the NCDR most likely remain (far) above 10/100,000. CONCLUSIONS: All models agree that, while incidence is likely to decline, achieving a NCDR below 10/100,000 by 2020 is unlikely in some states. Long-term prediction showed a downward trend with more variation between models, but highlights the need for further control measures to reduce the incidence of new infections if leprosy is to be eliminated.
Subject(s)
Leprosy/diagnosis , Leprosy/epidemiology , Models, Statistical , Brazil/epidemiology , Forecasting , Humans , IncidenceABSTRACT
BACKGROUND: The number of new leprosy cases reported annually is falling worldwide, but remains relatively high in some populations. Because of the long and variable periods between infection, onset of disease, and diagnosis, the recently detected cases are a reflection of infection many years earlier. Estimation of the numbers of sub-clinical and clinical infections would be useful for management of elimination programmes. Back-calculation is a methodology that could provide estimates of prevalence of undiagnosed infections, future diagnoses and the effectiveness of control. METHODS: A basic back-calculation model to investigate the infection dynamics of leprosy has been developed using Markov Chain Monte Carlo in a Bayesian context. The incidence of infection and the detection delay both vary with calendar time. Public data from Thailand are used to demonstrate the results that are obtained as the incidence of diagnosed cases falls. RESULTS: The results show that the underlying burden of infection and short-term future predictions of cases can be estimated with a simple model. The downward trend in new leprosy cases in Thailand is expected to continue. In 2015 the predicted total number of undiagnosed sub-clinical and clinical infections is 1,168 (846-1,546) of which 466 (381-563) are expected to be clinical infections. CONCLUSIONS: Bayesian back-calculation has great potential to provide estimates of numbers of individuals in health/infection states that are as yet unobserved. Predictions of future cases provides a quantitative measure of understanding for programme managers and evaluators. We will continue to develop the approach, and suggest that it might be useful for other NTD in which incidence of diagnosis is not an immediate measure of infection.
Subject(s)
Leprosy/epidemiology , Bayes Theorem , Humans , Incidence , Models, Theoretical , Prevalence , ThailandABSTRACT
Meat quality traits have low heritability and large environmental influences. To predict, improve and manage meat quality, proteomic biomarkers are superior to genetic markers. The objectives of this research were (1) to find associations between proteome profiles of longissimus muscle at slaughter and meat quality accuracies of prediction of traits ranged from 20 up to 80%. Differentially expressed proteins related to drip loss and ultimate pH were identified by NanoLC-FTMSMS. The proteins highlight biological mechanisms that may explain how these traits develop biologically and how they are related to each other.