Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Nature ; 617(7959): 118-124, 2023 05.
Article in English | MEDLINE | ID: mdl-37100915

ABSTRACT

Modern green revolution varieties of wheat (Triticum aestivum L.) confer semi-dwarf and lodging-resistant plant architecture owing to the Reduced height-B1b (Rht-B1b) and Rht-D1b alleles1. However, both Rht-B1b and Rht-D1b are gain-of-function mutant alleles encoding gibberellin signalling repressors that stably repress plant growth and negatively affect nitrogen-use efficiency and grain filling2-5. Therefore, the green revolution varieties of wheat harbouring Rht-B1b or Rht-D1b usually produce smaller grain and require higher nitrogen fertilizer inputs to maintain their grain yields. Here we describe a strategy to design semi-dwarf wheat varieties without the need for Rht-B1b or Rht-D1b alleles. We discovered that absence of Rht-B1 and ZnF-B (encoding a RING-type E3 ligase) through a natural deletion of a haploblock of about 500 kilobases shaped semi-dwarf plants with more compact plant architecture and substantially improved grain yield (up to 15.2%) in field trials. Further genetic analysis confirmed that the deletion of ZnF-B induced the semi-dwarf trait in the absence of the Rht-B1b and Rht-D1b alleles through attenuating brassinosteroid (BR) perception. ZnF acts as a BR signalling activator to facilitate proteasomal destruction of the BR signalling repressor BRI1 kinase inhibitor 1 (TaBKI1), and loss of ZnF stabilizes TaBKI1 to block BR signalling transduction. Our findings not only identified a pivotal BR signalling modulator but also provided a creative strategy to design high-yield semi-dwarf wheat varieties by manipulating the BR signal pathway to sustain wheat production.


Subject(s)
Biomass , Brassinosteroids , Edible Grain , Signal Transduction , Triticum , Alleles , Brassinosteroids/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Gene Deletion , Genes, Plant , Gibberellins/metabolism , Phenotype , Triticum/classification , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Plant Proteins/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism
2.
Front Plant Sci ; 13: 911993, 2022.
Article in English | MEDLINE | ID: mdl-36212357

ABSTRACT

Lateral organ boundaries domain (LBD) proteins, a class of plant-specific transcription factors with a special domain of lateral organ boundaries (LOB), play essential roles in plant growth and development. However, there is little known about the functions of these genes in wheat to date. Our previous study demonstrated that TaLBD16-4D is conducive to increasing lateral root number in wheat. In the present work, we further examined important agronomical traits of the aerial part of transgenic wheat overexpressing TaLBD16-4D. Interestingly, it was revealed that overexpressing TaLBD16-4D could lead to early heading and multiple alterations of plant architecture, including decreased plant height, increased flag leaf size and stem diameter, reduced spike length and tillering number, improved spike density and grain width, and decreased grain length. Moreover, auxin-responsive experiments demonstrated that the expression of TaLBD16-4D in wild-type (WT) wheat plants showed a significant upregulation through 2,4-D treatment. TaLBD16-4D-overexpression lines displayed a hyposensitivity to 2,4-D treatment and reduced shoot gravitropic response. The expressions of a set of auxin-responsive genes were markedly different between WT and transgenic plants. In addition, overexpressing TaLBD16-4D affected the transcript levels of flowering-related genes (TaGI, TaCO1, TaHd1, TaVRN1, TaVRN2, and TaFT1). Notably, the expression of TaGI, TaCO1, TaHd1, TaVRN1, and TaFT1 displayed significant upregulation under IAA treatment. Collectively, our observations indicated that overexpressing TaLBD16-4D could affect aerial architecture and heading time possibly though participating in the auxin pathway.

3.
Environ Monit Assess ; 93(1-3): 125-38, 2004.
Article in English | MEDLINE | ID: mdl-15074613

ABSTRACT

Nitrogen (N) contamination in the Yellow River mainstream and its tributaries was studied using data from 1960 to 2000 from 312 monitoring sites in the Yellow River system. Data showed that N concentrations in the Yellow River have increased since 1960, especially after 1990. N concentrations in the Yellow River mainstream increased from the upper reaches (less than 1.0 mg L(-1) for TN and less than 0.10 mg L(-1) for NH4(+)-N) to lower reaches (higher than 4-5 mg L(-1) for TN and higher than 1.0 mg L(-1) for NH4(+)-N). However, the highest N contaminations (50-250 mg L(-1) for TN and 10-20 mg L(-1) for NH4(+)-N) was found in some tributaries, which was attributed as an effect of industrial wastewater and municipal sewage. Nitrogen concentrations from several monitoring sites were positively correlated with several regional socio-economic indices, such as population density, fertilization rates, livestock, industrial input and GDP. Depending on location, seasonal N concentrations contrasted among watersheds. Monitoring stations located in rural and agricultural areas showed higher N concentrations during the flood season while those located in areas with urban and industrial centers showed higher N concentration during the dry season. Mainstream flow and N concentrations showed a strong inverse relationship; with higher N concentrations as the river flow declined. Intensive water extraction for agricultural irrigation and increasing N input to the river from fertilized agricultural fields could explain the increasing N concentrations during extensive droughts.


Subject(s)
Agriculture , Nitrogen/analysis , Rivers , China , Disasters , Environmental Monitoring , Humans , Seasons , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL