ABSTRACT
Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.
Subject(s)
Coal , Methane , Carbon , Natural GasABSTRACT
A primary environmental risk from unconventional oil and gas development or carbon sequestration is subsurface fluid leakage in the near wellbore environment. A potential solution to remediate leakage pathways is to promote microbially induced calcium carbonate precipitation (MICP) to plug fractures and reduce permeability in porous materials. The advantage of microbially induced calcium carbonate precipitation (MICP) over cement-based sealants is that the solutions used to promote MICP are aqueous. MICP solutions have low viscosities compared to cement, facilitating fluid transport into the formation. In this study, MICP was promoted in a fractured sandstone layer within the Fayette Sandstone Formation 340.8 m below ground surface using conventional oil field subsurface fluid delivery technologies (packer and bailer). After 24 urea/calcium solution and 6 microbial (Sporosarcina pasteurii) suspension injections, the injectivity was decreased (flow rate decreased from 1.9 to 0.47 L/min) and a reduction in the in-well pressure falloff (>30% before and 7% after treatment) was observed. In addition, during refracturing an increase in the fracture extension pressure was measured as compared to before MICP treatment. This study suggests MICP is a promising tool for sealing subsurface fractures in the near wellbore environment.
Subject(s)
Calcium Carbonate/chemistry , Chemical Precipitation , Sporosarcina/metabolism , Montana , Porosity , Pressure , Rheology , Tomography, X-Ray ComputedABSTRACT
Strontium-90 is a principal radionuclide contaminant in the subsurface at several Department of Energy sites in the Western U.S., causing a threat to groundwater quality in areas such as Hanford, WA. In this work, we used laboratory-scale porous media flow cells to examine a potential remediation strategy employing coprecipitation of strontium in carbonate minerals. CaCO(3) precipitation and strontium coprecipitation were induced via ureolysis by Sporosarcina pasteurii in two-dimensional porous media reactors. An injection strategy using pulsed injection of calcium mineralization medium was tested against a continuous injection strategy. The pulsed injection strategy involved periods of lowered calcite saturation index combined with short high fluid velocity flow periods of calcium mineralization medium followed by stagnation (no-flow) periods to promote homogeneous CaCO(3) precipitation. By alternating the addition of mineralization and growth media the pulsed strategy promoted CaCO(3) precipitation while sustaining the ureolytic culture over time. Both injection strategies achieved ureolysis with subsequent CaCO(3) precipitation and strontium coprecipitation. The pulsed injection strategy precipitated 71-85% of calcium and 59% of strontium, while the continuous injection was less efficient and precipitated 61% of calcium and 56% of strontium. Over the 60 day operation of the pulsed reactors, ureolysis was continually observed, suggesting that the balance between growth and precipitation phases allowed for continued cell viability. Our results support the pulsed injection strategy as a viable option for ureolysis-induced strontium coprecipitation because it may reduce the likelihood of injection well accumulation caused by localized mineral plugging while Sr coprecipitation efficiency is maintained in field-scale applications.
Subject(s)
Bacteria/metabolism , Calcium Carbonate/isolation & purification , Chemical Precipitation , Rheology/methods , Strontium/isolation & purification , Biodegradation, Environmental , Crystallization , Microscopy, Electron, Scanning , Porosity , Waste Disposal, Fluid , Water/chemistryABSTRACT
Mitigation strategies for sealing high permeability regions in cap rocks, such as fractures or improperly abandoned wells, are important considerations in the long term security of geologically stored carbon dioxide (CO(2)). Sealing technologies using low-viscosity fluids are advantageous in this context since they potentially reduce the necessary injection pressures and increase the radius of influence around injection wells. Using aqueous solutions and suspensions that can effectively promote microbially induced mineral precipitation is one such technology. Here we describe a strategy to homogenously distribute biofilm-induced calcium carbonate (CaCO(3)) precipitates in a 61 cm long sand-filled column and to seal a hydraulically fractured, 74 cm diameter Boyles Sandstone core. Sporosarcina pasteurii biofilms were established and an injection strategy developed to optimize CaCO(3) precipitation induced via microbial urea hydrolysis. Over the duration of the experiments, permeability decreased between 2 and 4 orders of magnitude in sand column and fractured core experiments, respectively. Additionally, after fracture sealing, the sandstone core withstood three times higher well bore pressure than during the initial fracturing event, which occurred prior to biofilm-induced CaCO(3) mineralization. These studies suggest biofilm-induced CaCO(3) precipitation technologies may potentially seal and strengthen fractures to mitigate CO(2) leakage potential.
Subject(s)
Air Pollutants/chemistry , Biofilms , Calcium Carbonate/chemistry , Carbon Dioxide/chemistry , Sporosarcina/physiology , Air Pollution/prevention & control , Carbon Sequestration , Chemical PrecipitationABSTRACT
Microbially-induced calcium carbonate (CaCO3) precipitation (MICP) is a widely explored and promising technology for use in various engineering applications. In this review, CaCO3 precipitation induced via urea hydrolysis (ureolysis) is examined for improving construction materials, cementing porous media, hydraulic control, and remediating environmental concerns. The control of MICP is explored through the manipulation of three factors: (1) the ureolytic activity (of microorganisms), (2) the reaction and transport rates of substrates, and (3) the saturation conditions of carbonate minerals. Many combinations of these factors have been researched to spatially and temporally control precipitation. This review discusses how optimization of MICP is attempted for different engineering applications in an effort to highlight the key research and development questions necessary to move MICP technologies toward commercial scale applications.
Subject(s)
Biofilms/growth & development , Calcium Carbonate/chemistry , Chemical Precipitation , Construction Materials/microbiology , Environmental Restoration and Remediation/methods , Urea/chemistry , Engineering , Hydrolysis , Porosity , Surface PropertiesABSTRACT
Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed the establishment of coal-associated microbial communities under in situ conditions for metagenomic analyses from environmental and translationally active populations. Metagenomic sequencing demonstrated that biosurfactants, aerobic dioxygenases, and anaerobic phenol degradation pathways were present in active populations across the sampled coal seams. In particular, results suggested the importance of anaerobic degradation pathways under high-sulfate conditions with an emphasis on fumarate addition. Under low-sulfate conditions, a mixture of both aerobic and anaerobic pathways was observed but with a predominance of aerobic dioxygenases. The putative low-molecular-weight biosurfactant, lichysein, appeared to play a more important role compared to rhamnolipids. The methods used in this study-subsurface environmental samplers in combination with metagenomic sequencing of both total and translationally active metagenomes-offer a deeper and environmentally relevant perspective on community genetic potential from coal seams poised at different redox conditions broadening the understanding of degradation strategies for subsurface carbon.
Subject(s)
Coal , Microbiota , Metagenomics , Methane , SulfatesABSTRACT
Noninvasive measurements of hydrodynamic dispersion by nuclear magnetic resonance (NMR) are made in a model porous system before and after a biologically mediated precipitation reaction. Traditional magnetic resonance imaging (MRI) was unable to detect the small scale changes in pore structure visualized during light microscopy analysis after destructive sampling of the porous medium. However, pulse gradient spin echo nuclear magnetic resonance (PGSE NMR) measurements clearly indicated a change in hydrodynamics including increased pore scale mixing. These changes were detected through time-dependent measurement of the propagator by PGSE NMR. The dynamics indicate an increased pore scale mixing which alters the preasymptotic approach to asymptotic Gaussian dynamics governed by the advection diffusion equation. The methods described here can be used in the future to directly measure the transport of solutes in biomineral-affected porous media and contribute towards reactive transport models, which take into account the influence of pore scale changes in hydrodynamics.
Subject(s)
Bacterial Physiological Phenomena , Biofilms , Hydrodynamics , Magnetic Resonance Spectroscopy/methods , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Chemical Precipitation , Diffusion , Magnetic Resonance Imaging , Normal Distribution , PorosityABSTRACT
The potential of microorganisms for enhancing carbon capture and storage (CCS) via mineral-trapping (where dissolved CO(2) is precipitated in carbonate minerals) and solubility trapping (as dissolved carbonate species in solution) was investigated. The bacterial hydrolysis of urea (ureolysis) was investigated in microcosms including synthetic brine (SB) mimicking a prospective deep subsurface CCS site with variable headspace pressures [p(CO(2))] of (13)C-CO(2). Dissolved Ca(2+) in the SB was completely precipitated as calcite during microbially induced hydrolysis of 5-20 g L(-1) urea. The incorporation of carbonate ions from (13)C-CO(2) ((13)C-CO(3)(2-)) into calcite increased with increasing p((13)CO(2)) and increasing urea concentrations: from 8.3% of total carbon in CaCO(3) at 1 g L(-1) to 31% at 5 g L(-1), and 37% at 20 g L(-1). This demonstrated that ureolysis was effective at precipitating initially gaseous [CO(2)(g)] originating from the headspace over the brine. Modeling the change in brine chemistry and carbonate precipitation after equilibration with the initial p(CO(2)) demonstrated that no net precipitation of CO(2)(g) via mineral-trapping occurred, since urea hydrolysis results in the production of dissolved inorganic carbon. However, the pH increase induced by bacterial ureolysis generated a net flux of CO(2)(g) into the brine. This reduced the headspace concentration of CO(2) by up to 32 mM per 100 mM urea hydrolyzed because the capacity of the brine for carbonate ions was increased, thus enhancing the solubility-trapping capacity of the brine. Together with the previously demonstrated permeability reduction of rock cores at high pressure by microbial biofilms and resilience of biofilms to supercritical CO(2), this suggests that engineered biomineralizing biofilms may enhance CCS via solubility-trapping, mineral formation, and CO(2)(g) leakage reduction.
Subject(s)
Carbon/chemistry , Algorithms , Bacteria/metabolism , Biofilms , Calcium Carbonate/chemistry , Carbon Dioxide/chemistry , Environmental Monitoring/methods , Environmental Restoration and Remediation , Hydrolysis , Ions , Models, Chemical , Solubility , Thermodynamics , WyomingABSTRACT
The long-term operation of bioremediation technologies relies on the success of the contaminant-degrading microorganism(s) to compete for available resources with microorganisms already present in an aquifer or those that may contaminate a bioreactor. Though research has been performed studying the interaction of multiple species in batch and chemostat reactors, little work has been done looking at multi-species interactions in environments that more closely resemble field-scale applications. The research presented herein examined the interaction of Burkholderia cepacia PR1-pTOM(31c), an aerobic trichloroethylene (TCE)-degrading bacterium, with Klebsiella oxytoca, a facultative bacterium, in a flow-through porous media (PM) reactor. Growth characteristics and population distributions in PM were compared to previously reported values from batch and chemostat reactors. The faster growing organism in batch experiments (K. oxytoca) did not always have the greater population density in dual-species PM experiments. The biofilm population distribution was influenced by substrate concentration, with B. cepacia having a greater dual-species population density than K. oxytoca at a low (30 mg/L dissolved organic carbon [DOC]) substrate concentration and K. oxytoca having a greater population density at a high (700 mg/L DOC) substrate concentration. This change in species population distribution with change in substrate concentration, which was not observed in batch reactors, was also observed in chemostat reactors. Therefore, manipulation of substrate concentration enabled the control of species dominance to the advantage of the TCE degrading population in this dual-species PM system and may provide a mechanism to enhance bioremediation scenarios involving TCE or other contaminants of concern.