Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Trends Immunol ; 43(9): 690-692, 2022 09.
Article in English | MEDLINE | ID: mdl-35953346

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) are distributed along the gastrointestinal tract at the interface between the immune system and the gut lumen, which carries a significant microbial burden. In a new study, Zhou et al. investigated the expression of transcription factor ZBTB46, normally thought to be restricted to classical dendritic cells (cDCs), and discovered that ZBTB46 expression by ILC3s in the mouse colon forms an essential part of the gastrointestinal armory to calibrate inflammatory responses.


Subject(s)
Immunity, Innate , Lymphocytes , Animals , Dendritic Cells , Gene Expression Regulation , Mice , Transcription Factors
2.
Sci Immunol ; 9(95): eadj2654, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820141

ABSTRACT

Tissue-resident innate lymphoid cells (ILCs) play a vital role in the frontline defense of various tissues, including the lung. The development of type 2 ILCs (ILC2s) depends on transcription factors such as GATA3, RORα, GFI1, and Bcl11b; however, the factors regulating lung-resident ILC2s remain unclear. Through fate mapping analysis of the paralog transcription factors GFI1 and GFI1B, we show that GFI1 is consistently expressed during the transition from progenitor to mature ILC2s. In contrast, GFI1B expression is limited to specific subsets of bone marrow progenitors and lung-resident ILC progenitors. We found that GFI1B+ lung ILC progenitors represent a multi-lineage subset with tissue-resident characteristics and the potential to form lung-derived ILC subsets and liver-resident ILC1s. Loss of GFI1B in bone marrow progenitors led to the selective loss of lung-resident IL-18R+ ILCs and mature ILC2, subsequently preventing the emergence of effector ILCs that could protect the lung against inflammatory or tumor challenge.


Subject(s)
Immunity, Innate , Lung , Mice, Inbred C57BL , Proto-Oncogene Proteins , Animals , Lung/immunology , Lung/cytology , Mice , Immunity, Innate/immunology , Proto-Oncogene Proteins/immunology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/metabolism , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/cytology , Repressor Proteins/genetics , Repressor Proteins/immunology , Mice, Knockout , Lymphocytes/immunology , Cell Differentiation/immunology , DNA-Binding Proteins , Transcription Factors
3.
Cancers (Basel) ; 15(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36980678

ABSTRACT

Treating colorectal cancer (CRC) is a major challenge due to the heterogeneous immunological, clinical and pathological landscapes. Immunotherapy has so far only proven effective in a very limited subgroup of CRC patients. To better define the immune landscape, we examined the immune gene expression profile in various subsets of CRC patients and used a mouse model of intestinal tumors to dissect immune functions. We found that the NK cell receptor, natural-killer group 2 member D (NKG2D, encoded by KLRK1) and NKG2D ligand gene expression is elevated in the most immunogenic subset of CRC patients. High level of KLRK1 positively correlated with the mRNA expression of IFNG and associated with a poor survival of CRC patients. We further show that NKG2D deficiency in the Apcmin/+ mouse model of intestinal tumorigenesis led to reduced intratumoral IFNγ production, reduced tumorigenesis and enhanced survival, suggesting that the high levels of IFNγ observed in the tumors of CRC patients may be a consequence of NKG2D engagement. The mechanisms governing the contribution of NKG2D to CRC progression highlighted in this study will fuel discussions about (i) the benefit of targeting NKG2D in CRC patients and (ii) the need to define the predictive value of NKG2D and NKG2D ligand expression across tumor types.

4.
Cell Mol Immunol ; 19(9): 1012-1029, 2022 09.
Article in English | MEDLINE | ID: mdl-35962192

ABSTRACT

Cancer is a complex disease, and despite incredible progress over the last decade, it remains the leading cause of death worldwide. Liver cancers, including hepatocellular carcinoma (HCC), and liver metastases are distinct from other cancers in that they typically emerge as a consequence of long-term low-grade inflammation. Understanding the mechanisms that underpin inflammation-driven tissue remodeling of the hepatic immune environment is likely to provide new insights into much needed treatments for this devastating disease. Group 1 innate lymphoid cells (ILCs), which include natural killer (NK) cells and ILC1s, are particularly enriched in the liver and thought to contribute to the pathogenesis of a number of liver diseases, including cancer. NK cells are an attractive, but underexplored, therapeutic target in hepatic disease due to their role in immunosurveillance and their ability to recognize and eliminate malignant cells. ILC1s are closely related to and share many phenotypic features with NK cells but are less well studied. Thus, their utility in immunotherapeutic approaches is not yet well understood. Here, we review our current understanding of ILCs in cancer with a particular focus on liver and liver-related diseases.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Immunity, Innate , Inflammation , Killer Cells, Natural , Lymphocytes , Tumor Microenvironment
5.
Discov Immunol ; 1(1): kyac002, 2022.
Article in English | MEDLINE | ID: mdl-36277678

ABSTRACT

γδT cells are unconventional T cells particularly abundant in mucosal tissues that play an important role in tissue surveillance, homeostasis, and cancer. γδT cells recognize stressed cells or cancer cells through the NKG2D receptor to kill these cells and maintain normality. Contrary to the well-established anti-tumor function of these NKG2D-expressing γδT cells, we show here that, in mice, NKG2D regulates a population of pro-tumor γδT cells capable of producing IL-17A. Germline deletion of Klrk1, the gene encoding NKG2D, reduced the frequency of γδT cells in the tumor microenvironment and delayed tumor progression. We further show that blocking NKG2D reduced the capability of γδT cells to produce IL-17A in the pre-metastatic lung and that co-culture of lung T cells with NKG2D ligand-expressing tumor cells specifically increased the frequency of γδT cells. Together, these data support the hypothesis that, in a tumor microenvironment where NKG2D ligands are constitutively expressed, γδT cells accumulate in an NKG2D-dependent manner and drive tumor progression by secreting pro-inflammatory cytokines, such as IL-17A.

6.
Immunother Adv ; 1(1): ltab018, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34604863

ABSTRACT

Cancer immunotherapies have significantly improved patient survival and treatment options in recent years. Nonetheless, the success of immunotherapy is limited to certain cancer types and specific subgroups of patients, making the development of new therapeutic approaches a topic of ongoing research. Chimeric antigen receptor (CAR) cells are engineered immune cells that are programmed to specifically eliminate cancer cells. Ideally, a CAR recognizes antigens that are restricted to tumor cells to avoid off-target effects. NKG2D is an activating immunoreceptor and an important player in anti-tumor immunity due to its ability to recognize tumor cells and initiate an anti-tumor immune response. Ligands for NKG2D are expressed on malignant or stressed cells and typically absent from healthy tissue, making it a promising CAR candidate. Here, we provide a summary of past and ongoing NKG2D-based CAR clinical trials and comment on potential pitfalls.

SELECTION OF CITATIONS
SEARCH DETAIL