Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS Biol ; 21(12): e3002188, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38055679

ABSTRACT

Chemokine-like receptor 1 (CMKLR1), also known as chemerin receptor 23 (ChemR23) or chemerin receptor 1, is a chemoattractant G protein-coupled receptor (GPCR) that responds to the adipokine chemerin and is highly expressed in innate immune cells, including macrophages and neutrophils. The signaling pathways of CMKLR1 can lead to both pro- and anti-inflammatory effects depending on the ligands and physiological contexts. To understand the molecular mechanisms of CMKLR1 signaling, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of the CMKLR1-Gi signaling complex with chemerin9, a nanopeptide agonist derived from chemerin, which induced complex phenotypic changes of macrophages in our assays. The cryo-EM structure, together with molecular dynamics simulations and mutagenesis studies, revealed the molecular basis of CMKLR1 signaling by elucidating the interactions at the ligand-binding pocket and the agonist-induced conformational changes. Our results are expected to facilitate the development of small molecule CMKLR1 agonists that mimic the action of chemerin9 to promote the resolution of inflammation.


Subject(s)
Intercellular Signaling Peptides and Proteins , Signal Transduction , Cryoelectron Microscopy , Receptors, G-Protein-Coupled/physiology , Chemokines/physiology
2.
Bioconjug Chem ; 30(10): 2664-2674, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31532989

ABSTRACT

Common interventional therapies for cardiovascular occlusive diseases, such as the implantation of stents, are at risk of complications like thrombosis or restenosis. Drug-eluting stents have improved patency but simultaneously worsen the endothelialization of the implant. Here, we present a novel peptide coating derived from three proteins of the extracellular matrix named fibronectin, laminin, and elastin. Their active sequences RGD, SIKVAV, and VGVAPG were immobilized onto titanium surfaces by a carrier peptide containing l-3,4-dihydroxyphenylalanine (DOPA). Simultaneous functionalization of the carrier peptide with cyclic c[RGDfK] and SIKVAV had the most potent influence on adhesion, proliferation, viability, and angiogenesis of endothelial cells. By presentation of two adhesion peptides in one molecule, a synergistic enhancement of cell-surface interactions was achieved. Overall, this work clearly demonstrates the advantages of spatially defined peptide coatings for the endothelialization of titanium and thus describes a promising approach for the coating of stents.


Subject(s)
Cell Adhesion/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Oligopeptides/chemistry , Oligopeptides/pharmacology , Titanium/chemistry , Amino Acid Sequence , Animals , Bivalvia , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Stents , Surface Properties
3.
bioRxiv ; 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37333145

ABSTRACT

Chemokine-like receptor 1 (CMKLR1), also known as chemerin receptor 23 (ChemR23) or chemerin receptor 1, is a chemoattractant G protein-coupled receptor (GPCR) that responds to the adipokine chemerin and is highly expressed in innate immune cells, including macrophages and neutrophils. The signaling pathways of CMKLR1 can lead to both pro- and anti-inflammatory effects depending on the ligands and physiological contexts. To understand the molecular mechanisms of CMKLR1 signaling, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of the CMKLR1-Gi signaling complex with chemerin9, a nanopeptide agonist derived from chemerin, which induced complex phenotypic changes of macrophages in our assays. The cryo-EM structure, together with molecular dynamics simulations and mutagenesis studies, revealed the molecular basis of CMKLR1 signaling by elucidating the interactions at the ligand-binding pocket and the agonist-induced conformational changes. Our results are expected to facilitate the development of small molecule CMKLR1 agonists that mimic the action of chemerin9 to promote the resolution of inflammation.

4.
ChemMedChem ; 17(23): e202200413, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36178206

ABSTRACT

To study the binding mode of the adipokine chemerin as well as the short peptide agonist chemerin-9 (C9) to its two receptors chemokine-like receptor 1 (CMKLR1) and G protein-coupled receptor 1 (GPR1), we generated 5-carboxytetramethylrhodamine (TAMRA) modified variants of both ligands. In addition, we labeled GPR1 and CMKLR1 with a nanoluciferase at the N-terminus to perform NanoBRET binding assays. For GPR1, both ligands show high affinity and comparable binding. Significant differences were found for CMKLR1, whereby only full-length chemerin binds with high affinity in saturation and displacement assays. For TAMRA-C9 a biphasic binding consisting of two binding states has been found and no displacement studies could be performed. Thus, we conclude that CMKLR1 requires full-length chemerin for stable binding in contrast to GPR1. This work demonstrates the NanoBRET binding assay as a new tool for binding studies at chemerin receptors and it enables deeper insights into the ligand binding parameters.


Subject(s)
Chemokines
SELECTION OF CITATIONS
SEARCH DETAIL