Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Circulation ; 144(7): 559-574, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34162223

ABSTRACT

BACKGROUND: Aging myocardium undergoes progressive cardiac hypertrophy and interstitial fibrosis with diastolic and systolic dysfunction. Recent metabolomics studies shed light on amino acids in aging. The present study aimed to dissect how aging leads to elevated plasma levels of the essential amino acid phenylalanine and how it may promote age-related cardiac dysfunction. METHODS: We studied cardiac structure and function, together with phenylalanine catabolism in wild-type (WT) and p21-/- mice (male; 2-24 months), with the latter known to be protected from cellular senescence. To explore phenylalanine's effects on cellular senescence and ectopic phenylalanine catabolism, we treated cardiomyocytes (primary adult rat or human AC-16) with phenylalanine. To establish a role for phenylalanine in driving cardiac aging, WT male mice were treated twice a day with phenylalanine (200 mg/kg) for a month. We also treated aged WT mice with tetrahydrobiopterin (10 mg/kg), the essential cofactor for the phenylalanine-degrading enzyme PAH (phenylalanine hydroxylase), or restricted dietary phenylalanine intake. The impact of senescence on hepatic phenylalanine catabolism was explored in vitro in AML12 hepatocytes treated with Nutlin3a (a p53 activator), with or without p21-targeting small interfering RNA or tetrahydrobiopterin, with quantification of PAH and tyrosine levels. RESULTS: Natural aging is associated with a progressive increase in plasma phenylalanine levels concomitant with cardiac dysfunction, whereas p21 deletion delayed these changes. Phenylalanine treatment induced premature cardiac deterioration in young WT mice, strikingly akin to that occurring with aging, while triggering cellular senescence, redox, and epigenetic changes. Pharmacological restoration of phenylalanine catabolism with tetrahydrobiopterin administration or dietary phenylalanine restriction abrogated the rise in plasma phenylalanine and reversed cardiac senescent alterations in aged WT mice. Observations from aged mice and human samples implicated age-related decline in hepatic phenylalanine catabolism as a key driver of elevated plasma phenylalanine levels and showed increased myocardial PAH-mediated phenylalanine catabolism, a novel signature of cardiac aging. CONCLUSIONS: Our findings establish a pathogenic role for increased phenylalanine levels in cardiac aging, linking plasma phenylalanine levels to cardiac senescence via dysregulated phenylalanine catabolism along a hepatic-cardiac axis. They highlight phenylalanine/PAH modulation as a potential therapeutic strategy for age-associated cardiac impairment.


Subject(s)
Aging/metabolism , Myocardium/metabolism , Phenylalanine/metabolism , Aging/pathology , Amino Acids/metabolism , Animals , Biomarkers , Biopterins/analogs & derivatives , Biopterins/pharmacology , Catalysis , Cellular Senescence/drug effects , Disease Models, Animal , Disease Susceptibility , Heart Diseases/etiology , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Humans , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Knockout , Models, Biological , Myocardium/pathology , Myocytes, Cardiac/metabolism , Phenylalanine/blood , Rats
3.
Circulation ; 138(8): 809-822, 2018 08 21.
Article in English | MEDLINE | ID: mdl-29500246

ABSTRACT

BACKGROUND: Aging induces cardiac structural and functional changes linked to the increased deposition of extracellular matrix proteins, including OPN (osteopontin), conducing to progressive interstitial fibrosis. Although OPN is involved in various pathological conditions, its role in myocardial aging remains unknown. METHODS: OPN deficient mice (OPN-/-) with their wild-type (WT) littermates were evaluated at 2 and 14 months of age in terms of cardiac structure, function, histology and key molecular markers. OPN expression was determined by reverse-transcription polymerase chain reaction, immunoblot and immunofluorescence. Luminex assays were performed to screen plasma samples for various cytokines/adipokines in addition to OPN. Similar explorations were conducted in aged WT mice after surgical removal of visceral adipose tissue (VAT) or treatment with a small-molecule OPN inhibitor agelastatin A. Primary WT fibroblasts were incubated with plasma from aged WT and OPN-/- mice, and evaluated for senescence (senescence-associated ß-galactosidase and p16), as well as fibroblast activation markers (Acta2 and Fn1). RESULTS: Plasma OPN levels increased in WT mice during aging, with VAT showing the strongest OPN induction contrasting with myocardium that did not express OPN. VAT removal in aged WT mice restored cardiac function and decreased myocardial fibrosis in addition to a substantial reduction of circulating OPN and transforming growth factor ß levels. OPN deficiency provided a comparable protection against age-related cardiac fibrosis and dysfunction. Intriguingly, a strong induction of senescence in cardiac fibroblasts was observed in both VAT removal and OPN-/- mice. The addition of plasma from aged OPN-/- mice to cultures of primary cardiac fibroblasts induced senescence and reduced their activation (compared to aged WT plasma). Finally, Agelastatin A treatment of aged WT mice fully reversed age-related myocardial fibrosis and dysfunction. CONCLUSIONS: During aging, VAT represents the main source of OPN and alters heart structure and function via its profibrotic secretome. As a proof-of-concept, interventions targeting OPN, such as VAT removal and OPN deficiency, rescued the heart and induced a selective modulation of fibroblast senescence. Our work uncovers OPN's role in the context of myocardial aging and proposes OPN as a potential new therapeutic target for a healthy cardiac aging.


Subject(s)
Cell Proliferation , Cellular Senescence , Fibroblasts/metabolism , Intra-Abdominal Fat/metabolism , Myocardium/metabolism , Osteopontin/metabolism , Paracrine Communication , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/prevention & control , Age Factors , Aging , Animals , Cells, Cultured , Fibroblasts/pathology , Fibrosis , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardium/pathology , Osteopontin/deficiency , Osteopontin/genetics , Proof of Concept Study , Signal Transduction , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left , Ventricular Remodeling
4.
Proc Natl Acad Sci U S A ; 113(26): E3706-15, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27303042

ABSTRACT

Folliculin (FLCN) is a tumor-suppressor protein mutated in the Birt-Hogg-Dubé (BHD) syndrome, which associates with two paralogous proteins, folliculin-interacting protein (FNIP)1 and FNIP2, forming a complex that interacts with the AMP-activated protein kinase (AMPK). Although it is clear that this complex influences AMPK and other metabolic regulators, reports of its effects have been inconsistent. To address this issue, we created a recessive loss-of-function variant of Fnip1 Homozygous FNIP1 deficiency resulted in profound B-cell deficiency, partially restored by overexpression of the antiapoptotic protein BCL2, whereas heterozygous deficiency caused a loss of marginal zone B cells. FNIP1-deficient mice developed cardiomyopathy characterized by left ventricular hypertrophy and glycogen accumulation, with close parallels to mice and humans bearing gain-of-function mutations in the γ2 subunit of AMPK. Concordantly, γ2-specific AMPK activity was elevated in neonatal FNIP1-deficient myocardium, whereas AMPK-dependent unc-51-like autophagy activating kinase 1 (ULK1) phosphorylation and autophagy were increased in FNIP1-deficient B-cell progenitors. These data support a role for FNIP1 as a negative regulator of AMPK.


Subject(s)
AMP-Activated Protein Kinases/metabolism , B-Lymphocytes/cytology , Cardiomyopathies/metabolism , Carrier Proteins/genetics , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism , AMP-Activated Protein Kinases/genetics , Animals , B-Lymphocytes/enzymology , B-Lymphocytes/metabolism , Cardiomyopathies/genetics , Carrier Proteins/metabolism , Cell Count , Humans , Mice , Mice, Inbred C57BL , Mutation , Proto-Oncogene Proteins/genetics , Tumor Suppressor Proteins/genetics
5.
Scand J Clin Lab Invest ; 77(5): 321-331, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28460577

ABSTRACT

We aimed to study the cardiac expression of bone morphogenetic protein 2, its receptor 1 b, and connective tissue growth factor, factors implicated in cardiac embryogenesis, following ischemia/hypoxia, heart failure, and in remodeling hearts from humans and mice. Biopsies from the left ventricle of patients with end-stage heart failure due to dilated cardiomyopathy or coronary artery disease were compared with donor hearts and biopsies from patients with normal heart function undergoing coronary artery bypass grafting. Mouse model of post-infarction remodeling was made by permanent ligation of the left coronary artery. Hearts were analyzed by real-time polymerase chain reaction and Western blotting after 24 hours and after 2 and 4 weeks. Patients with dilated cardiomyopathy and mice post-infarction had increased cardiac expression of connective tissue growth factor. Bone morphogenetic protein 2 was increased in human hearts failing due to coronary artery disease and in mice post-infarction. Gene expression of bone morphogenetic protein receptor 1 beta was reduced in hearts of patients with failure, but increased two weeks following permanent ligation of the left coronary artery in mice. In conclusion, connective tissue growth factor is upregulated in hearts of humans with dilated cardiomyopathy, bone morphogenetic protein 2 is upregulated in remodeling due to myocardial infarction while its receptor 1 b in human failing hearts is downregulated. A potential explanation might be an attempt to engage regenerative processes, which should be addressed by further, mechanistic studies.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein Receptors, Type I/genetics , Cardiomyopathy, Dilated/genetics , Connective Tissue Growth Factor/genetics , Coronary Artery Disease/genetics , Heart Failure/genetics , Adult , Aged , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein Receptors, Type I/metabolism , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Connective Tissue Growth Factor/metabolism , Coronary Artery Bypass , Coronary Artery Disease/complications , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Disease Models, Animal , Female , Gene Expression Regulation , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/pathology , Heart Function Tests , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocardium/metabolism , Myocardium/pathology , Signal Transduction
7.
Am J Respir Cell Mol Biol ; 55(3): 337-51, 2016 09.
Article in English | MEDLINE | ID: mdl-26974350

ABSTRACT

Excessive growth of pulmonary arterial (PA) smooth muscle cells (SMCs) is a major component of PA hypertension (PAH). The calcium-activated neutral cysteine proteases calpains 1 and 2, expressed by PASMCs, contribute to PH but are tightly controlled by a single specific inhibitor, calpastatin. Our objective was to investigate calpastatin during pulmonary hypertension (PH) progression and its potential role as an intracellular and/or extracellular effector. We assessed calpains and calpastatin in patients with idiopathic PAH and mice with hypoxic or spontaneous (SM22-5HTT(+) strain) PH. To assess intracellular and extracellular roles for calpastatin, we studied effects of the calpain inhibitor PD150606 on hypoxic PH in mice with calpastatin overexpression driven by the cytomegalovirus promoter (CMV-Cast) or C-reactive protein (CRP) promoter (CRP-Cast), inducing increased calpastatin production ubiquitously and in the liver, respectively. Chronically hypoxic and SM22-5HTT(+) mice exhibited increased lung calpastatin and calpain 1 and 2 protein levels and activity, both intracellularly and extracellularly. Prominent calpastatin and calpain immunostaining was found in PASMCs of remodeled vessels in mice and patients with PAH, who also exhibited increased plasma calpastatin levels. CMV-Cast and CRP-Cast mice showed similarly decreased PH severity compared with wild-type mice, with no additional effect of PD150606 treatment. In cultured PASMCs from wild-type and CMV-Cast mice, exogenous calpastatin decreased cell proliferation and migration with similar potency as PD150606 and suppressed fibronectin-induced potentiation. These results indicate that calpastatin limits PH severity via extracellular mechanisms. They suggest a new approach to the development of treatments for PH.


Subject(s)
Calcium-Binding Proteins/metabolism , Calpain/metabolism , Disease Progression , Extracellular Space/metabolism , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Acrylates/pharmacology , Acrylates/therapeutic use , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Cytomegalovirus/genetics , Extracellular Space/drug effects , Heart Function Tests , Humans , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/drug therapy , Hypoxia/complications , Hypoxia/metabolism , Hypoxia/physiopathology , Intracellular Space/drug effects , Intracellular Space/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Promoter Regions, Genetic/genetics , Pulmonary Artery/pathology
8.
Am J Respir Cell Mol Biol ; 55(3): 352-67, 2016 09.
Article in English | MEDLINE | ID: mdl-26991739

ABSTRACT

Constitutive activation of the mammalian target of rapamycin (mTOR) complexes mTORC1 and mTORC2 is associated with pulmonary hypertension (PH) and sustained growth of pulmonary artery (PA) smooth muscle cells (SMCs). We investigated whether selective mTORC1 activation in SMCs induced by deleting the negative mTORC1 regulator tuberous sclerosis complex 1 gene (TSC1) was sufficient to produce PH in mice. Mice expressing Cre recombinase under SM22 promoter control were crossed with TSC1(LoxP/LoxP) mice to generate SM22-TSC1(-/-) mice. At 8 weeks of age, SM22-TSC1(-/-) mice exhibited PH with marked increases in distal PA muscularization and Ki67-positive PASMC counts, without systemic hypertension or cardiac dysfunction. Marked activation of the mTORC1 substrates S6 kinase and 4E-BP and the mTORC2 substrates p-Akt(Ser473) and glycogen synthase kinase 3 was found in the lungs and pulmonary vessels of SM22-TSC1(-/-) mice when compared with control mice. Treatment with 5 mg/kg rapamycin for 3 weeks to inhibit mTORC1 and mTORC2 fully reversed PH in SM22-TSC1(-/-) mice. In chronically hypoxic mice and SM22-5HTT(+) mice exhibiting PH associated with mTORC1 and mTORC2 activation, PH was maximally attenuated by low-dose rapamycin associated with selective mTORC1 inhibition. Cultured PASMCs from SM22-TSC1(-/-), SM22-5HTT(+), and chronically hypoxic mice exhibited similar sustained growth-rate enhancement and constitutive mTORC1 and mTORC2 activation; both effects were abolished by rapamycin. Deletion of the downstream mTORC1 effectors S6 kinase 1/2 in mice also activated mTOR signaling and induced PH. We concluded that activation of mTORC1 signaling leads to increased PASMC proliferation and subsequent PH development.


Subject(s)
Gene Deletion , Hypertension, Pulmonary/metabolism , Muscle, Smooth/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Proliferation/drug effects , Cells, Cultured , Chronic Disease , Hyperplasia , Hypertension, Pulmonary/diagnostic imaging , Hypoxia/complications , Hypoxia/metabolism , Hypoxia/pathology , Lung/blood supply , Lung/pathology , Male , Metformin/pharmacology , Mice , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Smooth/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/pathology , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , Tuberous Sclerosis Complex 1 Protein
9.
J Biol Chem ; 290(43): 25907-19, 2015 10 23.
Article in English | MEDLINE | ID: mdl-26370078

ABSTRACT

We have reported previously that a missense mutation in the mitochondrial fission gene Dynamin-related protein 1 (Drp1) underlies the Python mouse model of monogenic dilated cardiomyopathy. The aim of this study was to investigate the consequences of the C452F mutation on Drp1 protein function and to define the cellular sequelae leading to heart failure in the Python monogenic dilated cardiomyopathy model. We found that the C452F mutation increased Drp1 GTPase activity. The mutation also conferred resistance to oligomer disassembly by guanine nucleotides and high ionic strength solutions. In a mouse embryonic fibroblast model, Drp1 C452F cells exhibited abnormal mitochondrial morphology and defective mitophagy. Mitochondria in C452F mouse embryonic fibroblasts were depolarized and had reduced calcium uptake with impaired ATP production by oxidative phosphorylation. In the Python heart, we found a corresponding progressive decline in oxidative phosphorylation with age and activation of sterile inflammation. As a corollary, enhancing autophagy by exposure to a prolonged low-protein diet improved cardiac function in Python mice. In conclusion, failure of Drp1 disassembly impairs mitophagy, leading to a downstream cascade of mitochondrial depolarization, aberrant calcium handling, impaired ATP synthesis, and activation of sterile myocardial inflammation, resulting in heart failure.


Subject(s)
Biopolymers/physiology , Dynamins/physiology , Heart Failure/etiology , Mitophagy , Myocarditis/etiology , Animals , Biopolymers/genetics , Biopolymers/metabolism , Cells, Cultured , Dynamins/genetics , Dynamins/metabolism , Heart Failure/physiopathology , Mice , Mutation , Myocarditis/physiopathology , Oxidative Phosphorylation
11.
Am J Physiol Heart Circ Physiol ; 309(11): H1883-93, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26453333

ABSTRACT

The activation of the calpain system is involved in the repair process following myocardial infarction (MI). However, the impact of the inhibition of calpain by calpastatin, its natural inhibitor, on scar healing and left ventricular (LV) remodeling is elusive. Male mice ubiquitously overexpressing calpastatin (TG) and wild-type (WT) controls were subjected to an anterior coronary artery ligation. Mortality at 6 wk was higher in TG mice (24% in WT vs. 44% in TG, P < 0.05) driven by a significantly higher incidence of cardiac rupture during the first week post-MI, despite comparable infarct size and LV dysfunction and dilatation. Calpain activation post-MI was blunted in TG myocardium. In TG mice, inflammatory cell infiltration and activation were reduced in the infarct zone (IZ), particularly affecting M2 macrophages and CD4(+) T cells, which are crucial for scar healing. To elucidate the role of calpastatin overexpression in macrophages, we stimulated peritoneal macrophages obtained from TG and WT mice in vitro with IL-4, yielding an abrogated M2 polarization in TG but not in WT cells. Lymphopenic Rag1(-/-) mice receiving TG splenocytes before MI demonstrated decreased T-cell recruitment and M2 macrophage activation in the IZ day 5 after MI compared with those receiving WT splenocytes. Calpastatin overexpression prevented the activation of the calpain system after MI. It also impaired scar healing, promoted LV rupture, and increased mortality. Defective scar formation was associated with blunted CD4(+) T-cell and M2-macrophage recruitment.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Calcium-Binding Proteins/metabolism , Lymphocyte Activation , Macrophage Activation , Macrophages/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Ventricular Remodeling , Wound Healing , Animals , CD4-Positive T-Lymphocytes/immunology , Calcium-Binding Proteins/genetics , Calpain/metabolism , Chemotaxis, Leukocyte , Disease Models, Animal , Enzyme Activation , Genotype , Heart Rupture, Post-Infarction/metabolism , Heart Rupture, Post-Infarction/pathology , Heart Rupture, Post-Infarction/physiopathology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Macrophages/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/immunology , Myocardium/pathology , Phenotype , Time Factors , Up-Regulation , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left
12.
Basic Res Cardiol ; 109(6): 450, 2014.
Article in English | MEDLINE | ID: mdl-25344086

ABSTRACT

Activation of heme oxygenase-1 (HO-1), a heme-degrading enzyme responsive to a wide range of cellular stress, is traditionally considered to convey adaptive responses to oxidative stress, inflammation and vasoconstriction. These diversified effects are achieved through the degradation of heme to carbon monoxide (CO), biliverdin (which is rapidly converted to bilirubin by biliverdin reductase) and ferric iron. Recent findings have added antiproliferative and angiogenic effects to the list of HO-1/CO actions. HO-1 along with its reaction products bilirubin and CO are protective against ischemia-induced injury (myocardial infarction, ischemia-reperfusion (IR)-injury and post-infarct structural remodelling). Moreover, HO-1, and CO in particular, possess acute antihypertensive effects. As opposed to these curative potentials, the long-believed protective effect of HO-1 in cardiac remodelling in response to pressure overload and type 2 diabetes mellitus (DM) has been questioned by recent work. These challenges, coupled with emerging regulatory mechanisms, motivate further in-depth studies to help understand untapped layers of HO-1 regulation and action. The outcomes of these efforts may shed new light on critical mechanisms that could be used to harness the protective potential of this enzyme for the therapeutic benefit of patients suffering from such highly prevalent cardiovascular disorders.


Subject(s)
Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Heme Oxygenase-1/physiology , Humans
13.
Acta Physiol (Oxf) ; : e14231, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39263916

ABSTRACT

AIM: Obstructive sleep apnea (OSA) is a growing health problem affecting nearly 1 billion people worldwide. The landmark feature of OSA is chronic intermittent hypoxia (CIH), accounting for multiple organ damage, including heart disease. CIH profoundly alters both visceral white adipose tissue (WAT) and heart structure and function, but little is known regarding inter-organ interaction in the context of CIH. We recently showed that visceral WAT senescence drives myocardial alterations in aged mice without CIH. Here, we aimed at investigating whether CIH induces a premature visceral WAT senescent phenotype, triggering subsequent cardiac remodeling. METHODS: In a first experiment, 10-week-old C57bl6J male mice (n = 10/group) were exposed to 14 days of CIH (8 h daily, 5%-21% cyclic inspired oxygen fraction, 60 s per cycle). In a second series, mice were submitted to either epididymal WAT surgical lipectomy or sham surgery before CIH exposure. Finally, we used p53 deficient mice or Wild-type (WT) littermates, also exposed to the same CIH protocol. Epididymal WAT was assessed for fibrosis, DNA damages, oxidative stress, markers of senescence (p16, p21, and p53), and inflammation by RT-qPCR and histology, and myocardium was assessed for fibrosis and cardiomyocyte hypertrophy. RESULTS: CIH-induced epididymal WAT remodeling characterized by increased fibrosis, oxidative stress, DNA damage response, inflammation, and increased expression of senescent markers. CIH-induced epididymal WAT remodeling was associated with subtle and early myocardial interstitial fibrosis. Both epididymal WAT surgical lipectomy and p53 deletion prevented CIH-induced myocardial fibrosis. CONCLUSION: Short-term exposure to CIH induces epididymal WAT senescent remodeling and cardiac interstitial fibrosis, the latter being prevented by lipectomy. This finding strongly suggests visceral WAT senescence as a new target to mitigate OSA-related cardiac disorders.

14.
J Mol Cell Cardiol ; 56: 22-33, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23238222

ABSTRACT

Aquaporin-1 (AQP1) is expressed in human and mouse hearts, but little is known about its cellular and subcellular localization and regulation. The aim of this study was to investigate the localization of AQP1 in the mouse heart and to determine the effects of ischemia and hypoxia on its expression. Mouse myocardial cells were freshly isolated and split into cardiomyocyte and non-cardiomyocyte fractions. Isolated, Langendorff-perfused C57Bl6 mouse hearts (n=46) were harvested with no intervention, subjected to 35min of ischemia or ischemia followed by 60min of reperfusion. Eleven mouse hearts were perfusion-fixed for electron microscopy. Forty C57Bl6 mice were exposed to normobaric hypoxia for one or two weeks (n=12). Needle biopsies of human left ventricular myocardium were sampled (n=30) during coronary artery bypass surgery before cardioplegia and after 30min of reperfusion. Human umbilical vein endothelial cells (HUVECs) were subjected to 4h of hypoxia with reoxygenation for either 4 or 24h. AQP1 expression was studied by electron microscopy with immunogold labeling, Western blot, and qPCR. Expression of miR-214 and miR-320 in HUVECs with hypoxia was studied with qPCR. HUVECs were then transfected with precursors and inhibitors of miR-214. AQP1 expression was confined to cardiac endothelial cells, with no signal in cardiomyocytes or cardiac fibroblasts. Immunogold electron microscopy showed AQP1 expression in endothelial caveolae with equal distribution along the basal and apical membranes. Ischemia and reperfusion tended to decrease AQP1 mRNA expression in mouse hearts by 37±9% (p=0.06), while glycosylated AQP1 protein was reduced by 16±9% (p=0.03). No difference in expression was found between ischemia alone and ischemia-reperfusion. In human left ventricles AQP1 mRNA expression was reduced following cardioplegia and reperfusion (p=0.008). Hypoxia in mice reduced AQP1 mRNA expression by 20±7% (p<0.0001), as well as both glycosylated (-47±10%, p=0.03) and glycan-free protein (-34±16%, p=0.05). Hypoxia and reoxygenation in HUVECs downregulated glycan-free AQP1 protein (-34±24%, p=0.04) and upregulated miR-214 (+287±52%, p<0.05). HUVECs transfected with anti-miR-214 had increased glycosylated (1.5 fold) and glycan-free (2 fold) AQP1. AQP1 in mouse hearts is localized to endothelial cell membranes and caveolae. Cardioplegia, ischemia and hypoxia decrease AQP1 mRNA as well as total protein expression and glycosylation, possibly regulated by miR-214.


Subject(s)
Aquaporin 1/metabolism , Down-Regulation , Human Umbilical Vein Endothelial Cells/metabolism , Myocardial Ischemia/metabolism , Myocardium/pathology , Animals , Aquaporin 1/genetics , Caveolae/metabolism , Cell Hypoxia , Fibroblasts/metabolism , Gene Expression , Glycosylation , Heart Arrest, Induced , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Protein Processing, Post-Translational , RNA Interference
15.
Cardiovasc Res ; 119(5): 1130-1145, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36082907

ABSTRACT

Diabetic cardiomyopathy (CM), occurring in the absence of hypertension, coronary artery disease, and valvular or congenital heart disease, is now recognized as a distinct, multifactorial disease leading to ventricular hypertrophy and abnormal myocardial contractility that correlates with an array of complex molecular and cellular changes. Animal models provide the unique opportunity to investigate mechanistic aspects of diabetic CM, but important caveats exist when extrapolating findings obtained from preclinical models of diabetes to humans. Indeed, animal models do not recapitulate the complexity of environmental factors, most notably the duration of the exposure to insulin resistance that may play a crucial role in the development of diabetic CM. Moreover, most preclinical studies are performed in animals with uncontrolled or poorly controlled diabetes, whereas patients tend to undergo therapeutic intervention. Finally, whilst type 2 diabetes mellitus prevalence trajectory mainly increases at 40- < 75 years (with a currently alarming increase at younger ages, however), it is a legitimate concern how closely rodent models employing young animals recapitulate the disease developing in old people. The aim of this review is to identify the current limitations of rodent models and to discuss how future mechanistic and preclinical studies should integrate key confounding factors to better mimic the diabetic CM phenotype.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Insulin Resistance , Animals , Humans , Diabetic Cardiomyopathies/etiology , Diabetes Mellitus, Type 2/epidemiology , Myocardium
16.
JCI Insight ; 8(8)2023 04 24.
Article in English | MEDLINE | ID: mdl-37092554

ABSTRACT

Adipose tissue macrophages (ATMs) play an important role in obesity and inflammation, and they accumulate in adipose tissue (AT) with aging. Furthermore, increased ATM senescence has been shown in obesity-related AT remodeling and dysfunction. However, ATM senescence and its role are unclear in age-related AT dysfunction. Here, we show that ATMs (a) acquire a senescence-like phenotype during chronological aging; (b) display a global decline of basic macrophage functions such as efferocytosis, an essential process to preserve AT homeostasis by clearing dysfunctional or apoptotic cells; and (c) promote AT remodeling and dysfunction. Importantly, we uncover a major role for the age-associated accumulation of osteopontin (OPN) in these processes in visceral AT. Consistently, loss or pharmacologic inhibition of OPN and bone marrow transplantation of OPN-/- mice attenuate the ATM senescence-like phenotype, preserve efferocytosis, and finally restore healthy AT homeostasis in the context of aging. Collectively, our findings implicate pharmacologic OPN inhibition as a viable treatment modality to counter ATM senescence-mediated AT remodeling and dysfunction during aging.


Subject(s)
Obesity , Osteopontin , Mice , Animals , Osteopontin/genetics , Obesity/genetics , Adipose Tissue , Macrophages , Phagocytosis
17.
J Mol Cell Cardiol ; 53(3): 342-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22683324

ABSTRACT

AMP-activated protein kinase (AMPK), the key sensor and regulator of cellular energy status, is a heterotrimeric enzyme with multiple isoforms for each subunit (α1/α 2; ß1/ß2; γ1/γ2/γ3). Mutations in PRKAG2, which encodes the γ2 regulatory subunit, cause a cardiomyopathy characterized by hypertrophy and conduction abnormalities. The two reported PRKAG2 transcript variants, γ2-short and γ2-long (encoding 328 and 569 amino acids respectively), are both widely expressed in adult tissues. We show that both γ2 variants are also expressed during cardiogenesis in mouse embryos; expression of the γ3 isoform was also detected unexpectedly at this stage. As neither γ2 transcript is cardiac specific nor differentially expressed during embryogenesis, it is paradoxical that the disease is largely restricted to the heart. However, a recently annotated γ2 transcript, termed γ2-3B as transcription starts at an alternative exon 3b, has been identified; it is spliced in-frame to exon 4 thus generating a protein of 443 residues in mouse with the first 32 residues being unique. It is increasingly expressed in the developing mouse heart and quantitative PCR analysis established that γ2-3B is the major PRKAG2 transcript (~60%) in human heart. Antibody against the novel N-terminal sequence showed that γ2-3B is predominantly expressed in the heart where it is the most abundant γ2 protein. The abundance of γ2-3B and its tissue specificity indicate that γ2-3B may have non-redundant role in the heart and hence mediate the predominantly cardiac phenotype caused by PRKAG2 mutations.


Subject(s)
AMP-Activated Protein Kinases/genetics , Gene Expression Regulation, Developmental , Heart/embryology , Myocardium/metabolism , Protein Subunits/genetics , RNA Isoforms/metabolism , AMP-Activated Protein Kinases/metabolism , Alternative Splicing , Animals , Exons , Gene Order , Male , Mice , Mice, Inbred C57BL , Mutation , Protein Subunits/metabolism , Transcription, Genetic
19.
Am J Physiol Heart Circ Physiol ; 300(4): H1291-302, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21186275

ABSTRACT

CCN2/connective tissue growth factor (CTGF), a CCN family matricellular protein repressed in healthy hearts after birth, is induced in heart failure of various etiologies. Multiple cellular and biological functions have been assigned to CCN2/CTGF depending on cellular context. However, the functions and mechanisms of action of CCN2/CTGF in the heart as well as its roles in cardiac physiology and pathophysiology remain unknown. Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) were generated and compared with nontransgenic littermate control (NLC) mice. Tg-CTGF mice displayed slightly lower cardiac mass and inconspicuous increase of myocardial collagen compared with NLC mice but no evidence of contractile dysfunction. Analysis of the myocardial transcriptome by DNA microarray revealed activation of several distinct gene programs in Tg-CTGF hearts involved in cardioprotection and growth inhibition. Indeed, Tg-CTGF mice subjected to ischemia-reperfusion injury by in situ transient occlusion of the left anterior descending coronary artery in vivo displayed reduced vulnerability with markedly diminished infarct size. These findings were recapitulated in isolated hearts perfused with recombinant human (h)CTGF before the ischemia-reperfusion procedure. Consistently, Tg-CTGF hearts, as well as isolated adult cardiac myocytes exposed to recombinant hCTGF, displayed enhanced phosphorylation and activity of the Akt/p70S6 kinase/GSK-3ß salvage kinase pathway and induction of several genes with reported cardioprotective functions. Inhibition of Akt activities also prevented the cardioprotective phenotype of hearts from Tg-CTGF mice. This report provides novel evidence that CTGF confers cardioprotection by salvage phosphokinase signaling leading to inhibition of GSK-3ß activities, activation of phospho-SMAD2, and reprogramming of gene expression.


Subject(s)
Connective Tissue Growth Factor/pharmacology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Animals , Cardiotonic Agents/pharmacology , Cells, Cultured , Connective Tissue Growth Factor/genetics , Gene Expression Profiling , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Male , Mice , Mice, Transgenic , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Smad2 Protein/metabolism
20.
Aging Cell ; 20(8): e13421, 2021 08.
Article in English | MEDLINE | ID: mdl-34278707

ABSTRACT

In the context of obesity, senescent cells accumulate in white adipose tissue (WAT). The cellular underpinnings of WAT senescence leading to insulin resistance are not fully elucidated. The objective of the current study was to evaluate the presence of WAT senescence early after initiation of high-fat diet (HFD, 1-10 weeks) in 5-month-old male C57BL/6J mice and the potential role of energy metabolism. We first showed that WAT senescence occurred 2 weeks after HFD as evidenced in whole WAT by increased senescence-associated ß-galactosidase activity and cyclin-dependent kinase inhibitor 1A and 2A expression. WAT senescence affected various WAT cell populations, including preadipocytes, adipose tissue progenitors, and immune cells, together with adipocytes. WAT senescence was associated with higher glycolytic and mitochondrial activity leading to enhanced ATP content in HFD-derived preadipocytes, as compared with chow diet-derived preadipocytes. One-month daily exercise, introduced 5 weeks after HFD, was an effective senostatic strategy, since it reversed WAT cellular senescence, while reducing glycolysis and production of ATP. Interestingly, the beneficial effect of exercise was independent of body weight and fat mass loss. We demonstrated that WAT cellular senescence is one of the earliest events occurring after HFD initiation and is intimately linked to the metabolic state of the cells. Our data uncover a critical role for HFD-induced elevated ATP as a local danger signal inducing WAT senescence. Exercise exerts beneficial effects on adipose tissue bioenergetics in obesity, reversing cellular senescence, and metabolic abnormalities.


Subject(s)
Adenosine Triphosphate/metabolism , Adipose Tissue/physiopathology , Diet, High-Fat/adverse effects , Energy Metabolism/physiology , Animals , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL