Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
Add more filters

Publication year range
1.
Cell ; 182(6): 1460-1473.e17, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32916129

ABSTRACT

The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) disorders. Determining its mechanistic role in disease has been difficult due to apparent disconnects between animal and human studies and lack of an integrated multi-omics view of disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut microbiome, metabolome, host epigenome, and transcriptome in the context of irritable bowel syndrome (IBS) host physiology. We identified IBS subtype-specific and symptom-related variation in microbial composition and function. A subset of identified changes in microbial metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway in IBS with translational potential. Our study highlights the importance of longitudinal sampling and integrating complementary multi-omics data to identify functional mechanisms that can serve as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases. VIDEO ABSTRACT.


Subject(s)
Gastrointestinal Microbiome/genetics , Gene Expression Regulation/genetics , Irritable Bowel Syndrome/metabolism , Metabolome , Purines/metabolism , Transcriptome/genetics , Animals , Bile Acids and Salts/metabolism , Biopsy , Butyrates/metabolism , Chromatography, Liquid , Cross-Sectional Studies , Epigenomics , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Gene Expression Regulation/physiology , Host Microbial Interactions/genetics , Humans , Hypoxanthine/metabolism , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/microbiology , Longitudinal Studies , Male , Metabolome/physiology , Mice , Observational Studies as Topic , Prospective Studies , Software , Tandem Mass Spectrometry , Transcriptome/physiology
3.
Nat Immunol ; 17(9): 1046-56, 2016 09.
Article in English | MEDLINE | ID: mdl-27478939

ABSTRACT

Single-nucleotide variations in C13orf31 (LACC1) that encode p.C284R and p.I254V in a protein of unknown function (called 'FAMIN' here) are associated with increased risk for systemic juvenile idiopathic arthritis, leprosy and Crohn's disease. Here we set out to identify the biological mechanism affected by these coding variations. FAMIN formed a complex with fatty acid synthase (FASN) on peroxisomes and promoted flux through de novo lipogenesis to concomitantly drive high levels of fatty-acid oxidation (FAO) and glycolysis and, consequently, ATP regeneration. FAMIN-dependent FAO controlled inflammasome activation, mitochondrial and NADPH-oxidase-dependent production of reactive oxygen species (ROS), and the bactericidal activity of macrophages. As p.I254V and p.C284R resulted in diminished function and loss of function, respectively, FAMIN determined resilience to endotoxin shock. Thus, we have identified a central regulator of the metabolic function and bioenergetic state of macrophages that is under evolutionary selection and determines the risk of inflammatory and infectious disease.


Subject(s)
Arthritis, Juvenile/genetics , Crohn Disease/genetics , Infections/genetics , Leprosy/genetics , Macrophages/immunology , Proteins/genetics , Shock, Septic/genetics , Adenosine Triphosphate/metabolism , Animals , Bacteriolysis , Cells, Cultured , Energy Metabolism , Fatty Acid Synthase, Type I/metabolism , Genetic Predisposition to Disease , Humans , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins , Lipid Metabolism/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidases/metabolism , Oxidation-Reduction , Polymorphism, Single Nucleotide , Risk
4.
Int J Cancer ; 154(1): 94-103, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37578112

ABSTRACT

Observational studies have suggested a protective role for eosinophils in colorectal cancer (CRC) development and implicated neutrophils, but the causal relationships remain unclear. Here, we aimed to estimate the causal effect of circulating white blood cell (WBC) counts (N = ~550 000) for basophils, eosinophils, monocytes, lymphocytes and neutrophils on CRC risk (N = 52 775 cases and 45 940 controls) using Mendelian randomisation (MR). For comparison, we also examined this relationship using individual-level data from UK Biobank (4043 incident CRC cases and 332 773 controls) in a longitudinal cohort analysis. The inverse-variance weighted (IVW) MR analysis suggested a protective effect of increased basophil count and eosinophil count on CRC risk [OR per 1-SD increase: 0.88, 95% CI: 0.78-0.99, P = .04; OR: 0.93, 95% CI: 0.88-0.98, P = .01]. The protective effect of eosinophils remained [OR per 1-SD increase: 0.88, 95% CI: 0.80-0.97, P = .01] following adjustments for all other WBC subtypes, to account for genetic correlation between the traits, using multivariable MR. A protective effect of increased lymphocyte count on CRC risk was also found [OR: 0.84, 95% CI: 0.76-0.93, P = 6.70e-4] following adjustment. Consistent with MR results, a protective effect for eosinophils in the cohort analysis in the fully adjusted model [RR per 1-SD increase: 0.96, 95% CI: 0.93-0.99, P = .02] and following adjustment for the other WBC subtypes [RR: 0.96, 95% CI: 0.93-0.99, P = .001] was observed. Our study implicates peripheral blood immune cells, in particular eosinophils and lymphocytes, in CRC development, highlighting a need for mechanistic studies to interrogate these relationships.


Subject(s)
Colorectal Neoplasms , Eosinophils , Humans , Leukocyte Count , Neutrophils , Phenotype , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Mendelian Randomization Analysis/methods , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide
5.
Nature ; 547(7662): 173-178, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28658209

ABSTRACT

Inflammatory bowel diseases are chronic gastrointestinal inflammatory disorders that affect millions of people worldwide. Genome-wide association studies have identified 200 inflammatory bowel disease-associated loci, but few have been conclusively resolved to specific functional variants. Here we report fine-mapping of 94 inflammatory bowel disease loci using high-density genotyping in 67,852 individuals. We pinpoint 18 associations to a single causal variant with greater than 95% certainty, and an additional 27 associations to a single variant with greater than 50% certainty. These 45 variants are significantly enriched for protein-coding changes (n = 13), direct disruption of transcription-factor binding sites (n = 3), and tissue-specific epigenetic marks (n = 10), with the last category showing enrichment in specific immune cells among associations stronger in Crohn's disease and in gut mucosa among associations stronger in ulcerative colitis. The results of this study suggest that high-resolution fine-mapping in large samples can convert many discoveries from genome-wide association studies into statistically convincing causal variants, providing a powerful substrate for experimental elucidation of disease mechanisms.


Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Inflammatory Bowel Diseases/genetics , Quantitative Trait Loci/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Binding Sites , Chromatin/genetics , Colitis, Ulcerative/genetics , Crohn Disease/genetics , Epigenesis, Genetic/genetics , Female , Genome-Wide Association Study , Genotype , Humans , Linkage Disequilibrium/genetics , Male , Middle Aged , Smad3 Protein/genetics , Transcription Factors/metabolism , Young Adult
6.
Proc Natl Acad Sci U S A ; 117(30): 17854-17863, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32647059

ABSTRACT

Pacemaker neurons exert control over neuronal circuit function by their intrinsic ability to generate rhythmic bursts of action potential. Recent work has identified rhythmic gut contractions in human, mice, and hydra to be dependent on both neurons and the resident microbiota. However, little is known about the evolutionary origin of these neurons and their interaction with microbes. In this study, we identified and functionally characterized prototypical ANO/SCN/TRPM ion channel-expressing pacemaker cells in the basal metazoan Hydra by using a combination of single-cell transcriptomics, immunochemistry, and functional experiments. Unexpectedly, these prototypical pacemaker neurons express a rich set of immune-related genes mediating their interaction with the microbial environment. Furthermore, functional experiments gave a strong support to a model of the evolutionary emergence of pacemaker cells as neurons using components of innate immunity to interact with the microbial environment and ion channels to generate rhythmic contractions.


Subject(s)
Biological Clocks , Hydra/physiology , Microbiota , Neurons/physiology , Action Potentials , Animals , Biological Evolution , Cluster Analysis , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation , Genome-Wide Association Study , Humans , Mice
7.
Gastroenterology ; 160(5): 1599-1607.e5, 2021 04.
Article in English | MEDLINE | ID: mdl-33421519

ABSTRACT

BACKGROUND AND AIMS: Gastrointestinal infections have been linked to changes in the composition and function of gut microbiome and development of inflammatory bowel diseases. We therefore sought to examine the relationship between gastroenteritis and risk of microscopic colitis (MC). METHODS: We conducted a case-control study of all adult patients with MC diagnosed between 1990 and 2016 in Sweden matched to up to 5 general population controls according to age, sex, calendar year, and county. Cases of MC were identified using Systematized Nomenclature of Medicine codes from the ESPRESSO (Epidemiology Strengthened by histoPathology Reports in Sweden) study, a cohort of gastrointestinal pathology reports from all 28 pathology centers in Sweden. We used logistic regression modeling to estimate adjusted odds ratios (aORs) and 95% confidence intervals (CIs). RESULTS: Through December of 2016, we matched 13,468 MC cases to 64,479 controls. The prevalence of previous diagnosed gastrointestinal infection was 7.5% among patients with MC, which was significantly higher than in controls (3.0%, Pcomparison < .001). After adjustment, gastroenteritis was associated with an increased risk of MC (aOR 2.63; 95% CI 2.42-2.85). Among specific pathogens, Clostridioides difficile (aOR 4.39; 95% CI 3.42-5.63), Norovirus (aOR 2.87; 95% CI 1.66-4.87), and Escherichia species (aOR 3.82; 95% CI 1.22-11.58), but not Salmonella species, were associated with an increased risk of MC. The association between gastrointestinal infections and risk of MC was stronger for collagenous subtype (aOR 3.23; 95% CI 2.81-3.70) as compared with lymphocytic colitis (aOR 2.51; 95% CI 2.28-2.76; Pheterogeneity = .005). The associations remained significant after adjustment for immune-mediated conditions and polypharmacy and when compared with unaffected siblings. CONCLUSION: In a nationwide study, we found that gastrointestinal infection, particularly Clostridioides difficile, is associated with an increased risk of subsequent MC. This study was approved by the Regional Ethics Committee, Stockholm, Sweden (Protocol no. 2014/1287-31/4).


Subject(s)
Bacterial Infections/epidemiology , Colitis, Microscopic/epidemiology , Gastroenteritis/epidemiology , Adult , Aged , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Case-Control Studies , Colitis, Collagenous/diagnosis , Colitis, Collagenous/epidemiology , Colitis, Collagenous/microbiology , Colitis, Lymphocytic/diagnosis , Colitis, Lymphocytic/epidemiology , Colitis, Lymphocytic/microbiology , Colitis, Microscopic/diagnosis , Colitis, Microscopic/microbiology , Dysbiosis , Female , Gastroenteritis/diagnosis , Gastroenteritis/microbiology , Gastrointestinal Microbiome , Humans , Male , Middle Aged , Prevalence , Risk Assessment , Risk Factors , Sweden/epidemiology , Time Factors
8.
Gastroenterology ; 161(5): 1526-1539.e9, 2021 11.
Article in English | MEDLINE | ID: mdl-34298022

ABSTRACT

BACKGROUND & AIMS: Preclinical ulcerative colitis is poorly defined. We aimed to characterize the preclinical systemic inflammation in ulcerative colitis, using a comprehensive set of proteins. METHODS: We obtained plasma samples biobanked from individuals who developed ulcerative colitis later in life (n = 72) and matched healthy controls (n = 140) within a population-based screening cohort. We measured 92 proteins related to inflammation using a proximity extension assay. The biologic relevance of these findings was validated in an inception cohort of patients with ulcerative colitis (n = 101) and healthy controls (n = 50). To examine the influence of genetic and environmental factors on these markers, a cohort of healthy twin siblings of patients with ulcerative colitis (n = 41) and matched healthy controls (n = 37) were explored. RESULTS: Six proteins (MMP10, CXCL9, CCL11, SLAMF1, CXCL11 and MCP-1) were up-regulated (P < .05) in preclinical ulcerative colitis compared with controls based on both univariate and multivariable models. Ingenuity Pathway Analyses identified several potential key regulators, including interleukin-1ß, tumor necrosis factor, interferon-gamma, oncostatin M, nuclear factor-κB, interleukin-6, and interleukin-4. For validation, we built a multivariable model to predict disease in the inception cohort. The model discriminated treatment-naïve patients with ulcerative colitis from controls with leave-one-out cross-validation (area under the curve = 0.92). Consistently, MMP10, CXCL9, CXCL11, and MCP-1, but not CCL11 and SLAMF1, were significantly up-regulated among the healthy twin siblings, even though their relative abundances seemed higher in incident ulcerative colitis. CONCLUSIONS: A set of inflammatory proteins are up-regulated several years before a diagnosis of ulcerative colitis. These proteins were highly predictive of an ulcerative colitis diagnosis, and some seemed to be up-regulated already at exposure to genetic and environmental risk factors.


Subject(s)
Blood Proteins/analysis , Colitis, Ulcerative/blood , Inflammation Mediators/blood , Proteome , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Case-Control Studies , Chemokine CCL11/blood , Chemokine CCL2/blood , Chemokine CXCL11/blood , Chemokine CXCL9/blood , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/immunology , Female , Humans , Male , Matrix Metalloproteinase 10/blood , Middle Aged , Predictive Value of Tests , Proteomics , Reproducibility of Results , Signaling Lymphocytic Activation Molecule Family Member 1/blood , Up-Regulation , Young Adult
9.
Gastroenterology ; 161(4): 1194-1207.e8, 2021 10.
Article in English | MEDLINE | ID: mdl-34245762

ABSTRACT

BACKGROUND & AIMS: The gut virome includes eukaryotic viruses and bacteriophages that can shape the gut bacterial community and elicit host responses. The virome can be implicated in diseases, such as irritable bowel syndrome (IBS), where gut bacteria play an important role in pathogenesis. We provide a comprehensive and longitudinal characterization of the virome, including DNA and RNA viruses and paired multi-omics data in a cohort of healthy subjects and patients with IBS. METHODS: We selected 2 consecutive stool samples per subject from a longitudinal study cohort and performed metagenomic sequencing on DNA and RNA viruses after enriching for viral-like particles. Viral sequence abundance was evaluated over time, as well as in the context of diet, bacterial composition and function, metabolite levels, colonic gene expression, host genetics, and IBS subsets. RESULTS: We found that the gut virome was temporally stable and correlated with the colonic transcriptome. We identified IBS-subset-specific changes in phage populations; Microviridae, Myoviridae, and Podoviridae species were elevated in diarrhea-predominant IBS, and other Microviridae and Myoviridae species were elevated in constipation-predominant IBS compared to healthy controls. We identified correlations between subsets of the virome and bacterial composition (unclassifiable "dark matter" and phages) and diet (eukaryotic viruses). CONCLUSIONS: We found that the gut virome is stable over time but varies among subsets of patients with IBS. It can be affected by diet and potentially influences host function via interactions with gut bacteria and/or altering host gene expression.


Subject(s)
Diet , Intestines/virology , Irritable Bowel Syndrome/virology , Transcriptome , Virome , Viruses/growth & development , Adult , Bacteriophages/genetics , Bacteriophages/growth & development , Case-Control Studies , Diet/adverse effects , Female , Gastrointestinal Microbiome , Gene Expression Profiling , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Intestines/microbiology , Irritable Bowel Syndrome/diagnosis , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/microbiology , Longitudinal Studies , Male , Metagenome , Metagenomics , Middle Aged , Virology , Viruses/genetics
10.
BMC Womens Health ; 22(1): 208, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659226

ABSTRACT

BACKGROUND: Risk prediction is an essential part of preventative medicine and in recent years genomic information has become an interesting factor in risk models. Polygenic risk scores (PRS) combine the effect of many genetic variations into a single score which has been shown to have predictive value for many diseases. This study aimed to investigate the association between PRS for endometriosis and the clinical presentation of the disease. METHODS: Women with endometriosis (N = 172) were identified at the Department of Gynecology. All participants answered questionnaires regarding sociodemographic factors, lifestyle habits and medical history, registered bowel symptoms on the Visual Analog Scale for Irritable Bowel Syndrome and passed blood samples. DNA was extracted and samples were genotyped, and a PRS was calculated based on previous genome-wide association studies of endometriosis. Inflammatory proteins and TSH receptor antibodies (TRAb) in serum were analyzed. RESULTS: Inverse associations were identified between PRS and spread of endometriosis, involvement of the gastrointestinal tract and hormone treatment. However, significance was lost when calculated as p for trend and the specificity and sensitivity were low. There were no correlations between PRS and TRAb or inflammatory proteins. CONCLUSION: The findings indicate that specific PRS should be developed to predict clinical presentations in patient with endometriosis.


Subject(s)
Endometriosis , Genome-Wide Association Study , Endometriosis/diagnosis , Endometriosis/genetics , Female , Genetic Predisposition to Disease , Genotype , Humans , Risk Factors
11.
J Cell Mol Med ; 25(16): 8047-8061, 2021 08.
Article in English | MEDLINE | ID: mdl-34165249

ABSTRACT

Irritable bowel syndrome (IBS) is a gut-brain disorder in which symptoms are shaped by serotonin acting centrally and peripherally. The serotonin transporter gene SLC6A4 has been implicated in IBS pathophysiology, but the underlying genetic mechanisms remain unclear. We sequenced the alternative P2 promoter driving intestinal SLC6A4 expression and identified single nucleotide polymorphisms (SNPs) that were associated with IBS in a discovery sample. Identified SNPs built different haplotypes, and the tagging SNP rs2020938 seems to associate with constipation-predominant IBS (IBS-C) in females. rs2020938 validation was performed in 1978 additional IBS patients and 6,038 controls from eight countries. Meta-analysis on data from 2,175 IBS patients and 6,128 controls confirmed the association with female IBS-C. Expression analyses revealed that the P2 promoter drives SLC6A4 expression primarily in the small intestine. Gene reporter assays showed a functional impact of SNPs in the P2 region. In silico analysis of the polymorphic promoter indicated differential expression regulation. Further follow-up revealed that the major allele of the tagging SNP rs2020938 correlates with differential SLC6A4 expression in the jejunum and with stool consistency, indicating functional relevance. Our data consolidate rs2020938 as a functional SNP associated with IBS-C risk in females, underlining the relevance of SLC6A4 in IBS pathogenesis.


Subject(s)
Biomarkers/metabolism , Irritable Bowel Syndrome/pathology , Phenotype , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin/metabolism , Female , Haplotypes , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Irritable Bowel Syndrome/etiology , Irritable Bowel Syndrome/metabolism
12.
Gastroenterology ; 159(2): 549-561.e8, 2020 08.
Article in English | MEDLINE | ID: mdl-32371109

ABSTRACT

BACKGROUND & AIMS: Collagenous colitis (CC) is an inflammatory bowel disorder with unknown etiopathogenesis involving HLA-related immune-mediated responses and environmental and genetic risk factors. We carried out an array-based genetic association study in a cohort of patients with CC and investigated the common genetic basis between CC and Crohn's disease (CD), ulcerative colitis (UC), and celiac disease. METHODS: DNA from 804 CC formalin-fixed, paraffin-embedded tissue samples was genotyped with Illumina Immunochip. Matching genotype data on control samples and CD, UC, and celiac disease cases were provided by the respective consortia. A discovery association study followed by meta-analysis with an independent cohort, polygenic risk score calculation, and cross-phenotype analyses were performed. Enrichment of regulatory expression quantitative trait loci among the CC variants was assessed in hemopoietic and intestinal cells. RESULTS: Three HLA alleles (HLA-B∗08:01, HLA-DRB1∗03:01, and HLA-DQB1∗02:01), related to the ancestral haplotype 8.1, were significantly associated with increased CC risk. We also identified an independent protective effect of HLA-DRB1∗04:01 on CC risk. Polygenic risk score quantifying the risk across multiple susceptibility loci was strongly associated with CC risk. An enrichment of expression quantitative trait loci was detected among the CC-susceptibility variants in various cell types. The cross-phenotype analysis identified a complex pattern of polygenic pleiotropy between CC and other immune-mediated diseases. CONCLUSIONS: In this largest genetic study of CC to date with histologically confirmed diagnosis, we strongly implicated the HLA locus and proposed potential non-HLA mechanisms in disease pathogenesis. We also detected a shared genetic risk between CC, celiac disease, CD, and UC, which supports clinical observations of comorbidity.


Subject(s)
Colitis, Collagenous/genetics , Genetic Predisposition to Disease , HLA Antigens/genetics , Alleles , Case-Control Studies , Celiac Disease/genetics , Celiac Disease/immunology , Celiac Disease/pathology , Cohort Studies , Colitis, Collagenous/immunology , Colitis, Collagenous/pathology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Colon/pathology , Crohn Disease/genetics , Crohn Disease/immunology , Crohn Disease/pathology , Datasets as Topic , Genetic Association Studies , HLA Antigens/immunology , Humans , Multifactorial Inheritance/immunology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Risk Factors , Tissue Array Analysis
13.
PLoS Genet ; 14(5): e1007298, 2018 05.
Article in English | MEDLINE | ID: mdl-29723195

ABSTRACT

Ambient temperature is a critical environmental factor for all living organisms. It was likely an important selective force as modern humans recently colonized temperate and cold Eurasian environments. Nevertheless, as of yet we have limited evidence of local adaptation to ambient temperature in populations from those environments. To shed light on this question, we exploit the fact that humans are a cosmopolitan species that inhabit territories under a wide range of temperatures. Focusing on cold perception-which is central to thermoregulation and survival in cold environments-we show evidence of recent local adaptation on TRPM8. This gene encodes for a cation channel that is, to date, the only temperature receptor known to mediate an endogenous response to moderate cold. The upstream variant rs10166942 shows extreme population differentiation, with frequencies that range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribution). When all populations are jointly analyzed, allele frequencies correlate with latitude and temperature beyond what can be explained by shared ancestry and population substructure. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in Africa, while positive selection raised its frequency to different degrees in Eurasian populations, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive selection, in agreement with ancient DNA showing high frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral allele is protective of migraine. This debilitating disorder varies in prevalence across human populations, with highest prevalence in individuals of European descent-precisely the population with the highest frequency of rs10166942 derived allele. We thus hypothesize that local adaptation on previously neutral standing variation may have contributed to the genetic differences that exist in the prevalence of migraine among human populations today.


Subject(s)
Adaptation, Physiological/genetics , Cold Temperature , Polymorphism, Single Nucleotide , TRPM Cation Channels/genetics , Africa , Asia , Bayes Theorem , Europe , Gene Expression Profiling , Gene Frequency , Genetics, Population/statistics & numerical data , Genotype , Humans , Linkage Disequilibrium , Selection, Genetic
14.
FASEB J ; 33(5): 6632-6642, 2019 05.
Article in English | MEDLINE | ID: mdl-30802137

ABSTRACT

The Ca2+-activated Cl- channel, anoctamin 1 (Ano1, also known as transmembrane protein 16A) contributes to intestinal pacemaking, fluid secretion, cellular excitability, and tissue development. The human ANO1 promoter contains binding sites for the glioma-associated oncogene (Gli) proteins. We investigated regulation of ANO1 transcription by Gli. ANO1 promoter activity was determined using a luciferase reporter system. Binding and functional effects of Glis on ANO1 transcription and expression were demonstrated by chromatin immunoprecipitation, small interfering RNA knockdown, PCR, immunolabeling, and recordings of Ca2+-activated Cl- currents in human embryonic kidney 293 (HEK293) cells. Results from previous genome-wide association studies were used to test ANO1 promoter polymorphisms for association with disease. Gli1 and Gli2 bound to the promoter and repressed ANO1 transcription. Repression depended on Gli binding to a site close to the ANO1 transcriptional start site. Mutation of this site prevented Gli binding and transcriptional repression. Knockdown of Gli expression and inhibition of Gli activity increased expression of ANO1 RNA and Ca2+-activated Cl- currents in HEK293 cells. A single-nucleotide polymorphism prevented Gli binding and showed association with irritable bowel syndrome. We conclude that Gli1 and Gli2 repress ANO1 by a novel mechanism that is independent of Gli cleavage and that has a role in gastrointestinal function.-Mazzone, A., Gibbons, S. J., Eisenman, S. T., Strege, P. R., Zheng, T., D'Amato, M., Ordog, T., Fernandez-Zapico, M. E., Farrugia, G. Direct repression of anoctamin 1 (ANO1) gene transcription by Gli proteins.


Subject(s)
Anoctamin-1/biosynthesis , Gene Expression Regulation , Neoplasm Proteins/biosynthesis , Nuclear Proteins/metabolism , Transcription Initiation Site , Transcription, Genetic , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein Gli2/metabolism , Anoctamin-1/genetics , Calcium/metabolism , Calcium Signaling , HEK293 Cells , Humans , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/metabolism , Mutation , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein Gli2/genetics
17.
Gastroenterology ; 155(1): 168-179, 2018 07.
Article in English | MEDLINE | ID: mdl-29626450

ABSTRACT

BACKGROUND & AIMS: Genetic factors are believed to affect risk for irritable bowel syndrome (IBS), but there have been no sufficiently powered and adequately sized studies. To identify DNA variants associated with IBS risk, we performed a genome-wide association study (GWAS) of the large UK Biobank population-based cohort, which includes genotype and health data from 500,000 participants. METHODS: We studied 7,287,191 high-quality single nucleotide polymorphisms in individuals who self-reported a doctor's diagnosis of IBS (cases; n = 9576) compared to the remainder of the cohort (controls; n = 336,499) (mean age of study subjects, 40-69 years). Genome-wide significant findings were further investigated in 2045 patients with IBS from tertiary centers and 7955 population controls from Europe and the United States, and a small general population sample from Sweden (n = 249). Functional annotation of GWAS results was carried out by integrating data from multiple biorepositories to obtain biological insights from the observed associations. RESULTS: We identified a genome-wide significant association on chromosome 9q31.2 (single nucleotide polymorphism rs10512344; P = 3.57 × 10-8) in a region previously linked to age at menarche, and 13 additional loci of suggestive significance (P < 5.0×10-6). Sex-stratified analyses revealed that the variants at 9q31.2 affect risk of IBS in women only (P = 4.29 × 10-10 in UK Biobank) and also associate with constipation-predominant IBS in women (P = .015 in the tertiary cohort) and harder stools in women (P = .0012 in the population-based sample). Functional annotation of the 9q31.2 locus identified 8 candidate genes, including the elongator complex protein 1 gene (ELP1 or IKBKAP), which is mutated in patients with familial dysautonomia. CONCLUSIONS: In a sufficiently powered GWAS of IBS, we associated variants at the locus 9q31.2 with risk of IBS in women. This observation may provide additional rationale for investigating the role of sex hormones and autonomic dysfunction in IBS.


Subject(s)
Chromosomes, Human, Pair 9/genetics , Constipation/genetics , Irritable Bowel Syndrome/genetics , Menarche/genetics , Adult , Aged , Constipation/etiology , Constipation/physiopathology , Europe , Female , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Genotype , Humans , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/physiopathology , Male , Middle Aged , Polymorphism, Single Nucleotide , Self Report , Sex Factors , Sweden , United States
20.
Gut ; 67(2): 263-270, 2018 02.
Article in English | MEDLINE | ID: mdl-27872184

ABSTRACT

OBJECTIVE: IBS is a common gut disorder of uncertain pathogenesis. Among other factors, genetics and certain foods are proposed to contribute. Congenital sucrase-isomaltase deficiency (CSID) is a rare genetic form of disaccharide malabsorption characterised by diarrhoea, abdominal pain and bloating, which are features common to IBS. We tested sucrase-isomaltase (SI) gene variants for their potential relevance in IBS. DESIGN: We sequenced SI exons in seven familial cases, and screened four CSID mutations (p.Val557Gly, p.Gly1073Asp, p.Arg1124Ter and p.Phe1745Cys) and a common SI coding polymorphism (p.Val15Phe) in a multicentre cohort of 1887 cases and controls. We studied the effect of the 15Val to 15Phe substitution on SI function in vitro. We analysed p.Val15Phe genotype in relation to IBS status, stool frequency and faecal microbiota composition in 250 individuals from the general population. RESULTS: CSID mutations were more common in patients than asymptomatic controls (p=0.074; OR=1.84) and Exome Aggregation Consortium reference sequenced individuals (p=0.020; OR=1.57). 15Phe was detected in 6/7 sequenced familial cases, and increased IBS risk in case-control and population-based cohorts, with best evidence for diarrhoea phenotypes (combined p=0.00012; OR=1.36). In the population-based sample, 15Phe allele dosage correlated with stool frequency (p=0.026) and Parabacteroides faecal microbiota abundance (p=0.0024). The SI protein with 15Phe exhibited 35% reduced enzymatic activity in vitro compared with 15Val (p<0.05). CONCLUSIONS: SI gene variants coding for disaccharidases with defective or reduced enzymatic activity predispose to IBS. This may help the identification of individuals at risk, and contribute to personalising treatment options in a subset of patients.


Subject(s)
Irritable Bowel Syndrome/enzymology , Irritable Bowel Syndrome/genetics , Sucrase-Isomaltase Complex/genetics , Sucrase-Isomaltase Complex/metabolism , Adult , Animals , Carbohydrate Metabolism, Inborn Errors/genetics , Case-Control Studies , Cell Line , Cell Membrane/enzymology , DNA Mutational Analysis , Defecation/genetics , Diarrhea/etiology , Exons , Feces/microbiology , Female , Gene Dosage , Genotype , Haplorhini , Humans , Irritable Bowel Syndrome/complications , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Risk Factors , Sucrase-Isomaltase Complex/deficiency , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL