Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Genet ; 12: 663643, 2021.
Article in English | MEDLINE | ID: mdl-34046058

ABSTRACT

The two aims of this study were (i) to describe and expand the phenotypic spectrum of PIGT deficiency in affected individuals harboring the c.1582G>A; p.Val528Met or the c.1580A > G; p.Asn527Ser variant in either homozygous or compound heterozygous state, and (ii) to identify potential genotype-phenotype correlations and any differences in disease severity among individuals with and without the PIGT variants. The existing literature was searched to identify individuals with and without the two variants. A detailed phenotypic assessment was performed of 25 individuals (both novel and previously published) with the two PIGT variants. We compared severity of disease between individuals with and without these PIGT variants. Twenty-four individuals carried the PIGT variant Val528Met in either homozygous or compound heterozygous state, and one individual displayed the Asn527Ser variant in a compound heterozygous state. Disease severity in the individual with the Asn527Ser variant was compatible with that in the individuals harboring the Val528Met variant. While individuals without the Asn527Ser or Val528Met variant had focal epilepsy, profound developmental delay (DD), and risk of premature death, those with either of the two variants had moderate to severe DD and later onset of epilepsy with both focal and generalized seizures. Individuals homozygous for the Val528Met variant generally became seizure-free on monotherapy with antiepileptic drugs, compared to other PIGT individuals who were pharmaco-resistant. Two patients were diagnosed with myoclonic-atonic seizures, and a single patient was diagnosed with eyelid myoclonia. Our comprehensive analysis of this large cohort of previously published and novel individuals with PIGT variants broadens the phenotypical spectrum and shows that both Asn527Ser and Val528Met are associated with a milder phenotype and less severe outcome. Our data show that PIGT is a new candidate gene for myoclonic atonic epilepsy. Our genotype-phenotype correlation will be useful for future genetic counseling. Natural history studies of this mild spectrum of PIGT-related disorder may shed light on hitherto unknown aspects of this rare disorder.

2.
Eur J Paediatr Neurol ; 30: 121-127, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33132036

ABSTRACT

OBJECTIVE: Continuous spikes and waves during sleep (CSWS) is an epileptic encephalopathy characterized by generalised epileptiform activity and neurocognitive dysfunction. Causes and outcome are diverse and treatment is mainly empirical. METHODS: Retrospective descriptive analysis of clinical and EEG data of children with CSWS diagnosed between 1998 and 2018 at the University Hospital Heidelberg. RESULTS: Ninety-five children were included with a median age at diagnosis of 5.4 years. A structural/metabolic aetiology was found in 43.2%, genetic alterations in 17.9%, while it remained unknown in 38.9%. The proportion of patients with genetic aetiology increased from 10.3% (1998-2007) to 22.8% (2008-2018). On average, each patient received 5 different treatments. CSWS was refractory in >70% of cases, steroids and neurosurgery were most effective. No difference was observed between children with CSWS or Near-CSWS (Spike-Wave-Index 40-85%). CONCLUSIONS: Our cohort confirms CSWS as an age-dependent epileptic encephalopathy. Structural brain abnormalities were most frequent, but genetic causes are increasingly identified. More specific criteria for the diagnosis and treatment goals should be elaborated and implemented based on evidence. SIGNIFICANCE: This study is the largest monocentric observational study on treatment effects in children with CSWS, providing data for diagnostic and therapeutic decisions.


Subject(s)
Epilepsy, Generalized/etiology , Epilepsy, Generalized/therapy , Sleep , Adolescent , Child , Child, Preschool , Female , Humans , Male , Retrospective Studies , Treatment Outcome
3.
Biomedicines ; 8(11)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126500

ABSTRACT

Pathogenic variants in PRRT2, encoding the proline-rich transmembrane protein 2, have been associated with an evolving spectrum of paroxysmal neurologic disorders. Based on a cohort of children with PRRT2-related infantile epilepsy, this study aimed at delineating the broad clinical spectrum of PRRT2-associated phenotypes in these children and their relatives. Only a few recent larger cohort studies are on record and findings from single reports were not confirmed so far. We collected detailed genetic and phenotypic data of 40 previously unreported patients from 36 families. All patients had benign infantile epilepsy and harbored pathogenic variants in PRRT2 (core cohort). Clinical data of 62 family members were included, comprising a cohort of 102 individuals (extended cohort) with PRRT2-associated neurological disease. Additional phenotypes in the cohort of patients with benign sporadic and familial infantile epilepsy consist of movement disorders with paroxysmal kinesigenic dyskinesia in six patients, infantile-onset movement disorders in 2 of 40 individuals, and episodic ataxia after mild head trauma in one girl with bi-allelic variants in PRRT2. The same girl displayed a focal cortical dysplasia upon brain imaging. Familial hemiplegic migraine and migraine with aura were reported in nine families. A single individual developed epilepsy with continuous spikes and waves during sleep. In addition to known variants, we report the novel variant c.843G>T, p.(Trp281Cys) that co-segregated with benign infantile epilepsy and migraine in one family. Our study highlights the variability of clinical presentations of patients harboring pathogenic PRRT2 variants and expands the associated phenotypic spectrum.

4.
PLoS One ; 11(8): e0161660, 2016.
Article in English | MEDLINE | ID: mdl-27557111

ABSTRACT

BACKGROUND: Epilepsy is a serious chronic health condition with a high morbidity impairing the life of patients and afflicted families. Many epileptic conditions, especially those affecting children, are rare disorders generating an urgent medical need for more efficacious therapy options. Therefore, we assessed the output of the US and European orphan drug legislations. METHODS: Quantitative analysis of the FDA and EMA databases for orphan drug designations according to STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) criteria. RESULTS: Within the US Orphan Drug Act 40 designations were granted delivering nine approvals, i.e. clobazam, diazepam viscous solution for rectal administration, felbamate, fosphenytoin, lamotrigine, repository corticotropin, rufinamide, topiramate, and vigabatrin. Since 2000 the EMA granted six orphan drug designations whereof two compounds were approved, i.e. rufinamide and stiripentol. In the US, two orphan drug designations were withdrawn. Orphan drugs were approved for conditions including Lennox-Gastaut syndrome, infantile spasms, Dravet syndrome, and status epilepticus. Comparing time to approval for rufinamide, which was approved in the US and the EU to treat rare seizure conditions, the process seems faster in the EU (2.2 years) than in the US (4.3 years). CONCLUSION: Orphan drug development in the US and in the EU delivered only few molecular entities to treat rare seizure disorders. The development programs focused on already approved antiepileptic drugs or alternative pharmaceutical formulations. Most orphan drugs approved in the US are not approved in the EU to treat rare seizures although some were introduced after 2000 when the EU adopted the Orphan Drug Regulation.


Subject(s)
Anticonvulsants , Drug Discovery/legislation & jurisprudence , Legislation, Drug , Orphan Drug Production/legislation & jurisprudence , Rare Diseases/epidemiology , Seizures/epidemiology , Anticonvulsants/history , Anticonvulsants/therapeutic use , Cross-Sectional Studies , Databases, Pharmaceutical , Drug Approval , Drug Discovery/history , Europe , History, 20th Century , History, 21st Century , Humans , Orphan Drug Production/history , Rare Diseases/drug therapy , Research Design , Seizures/drug therapy , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL