Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; : e2310478, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334247

ABSTRACT

Addressing the challenge of lighting stability in perovskite white light emitting diodes (WLEDs) is crucial for their commercial viability. CsPbX3 (X = Cl, Br, I, or mixed) nanocrystals (NCs) are promising for next-generation lighting due to their superior optical and electronic properties. However, the inherent soft material structure of CsPbX3 NCs is particularly susceptible to the elevated temperatures associated with prolonged WLED operation. Additionally, these NCs face stability challenges in high humidity environments, leading to reduced lighting performance. This study introduces a two-step dual encapsulation method, resulting in CsPbBr3 @SiO2 /Al2 SiO5 composite fibers (CFs) with enhanced optical stability under extreme conditions. In testing, WLEDs incorporating these CFs, even under prolonged operation at high power (100 mA for 9 h), maintain consistent electroluminescence (EL) intensity and optoelectronic parameters, with surface temperatures reaching 84.2 °C. Crucially, when subjected to 85 °C and 85% relative humidity for 200 h, the WLEDs preserve 97% of their initial fluorescence efficiency. These findings underscore the efficacy of the dual encapsulation strategy in significantly improving perovskite material stability, marking a significant step toward their commercial application in optoelectronic lighting.

2.
Nanoscale ; 16(23): 11310-11317, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38804052

ABSTRACT

Room temperature phosphorescent (RTP) carbon dot (CD) materials have been widely used in various fields, but it is difficult to achieve a long lifetime, high stability and easy synthesis. In particular, realizing the phosphorescence emission of CDs using a metal oxide (MO) matrix is a challenge. Here, solid gels are synthesized via in situ hydrolysis, and then RTP CDs are synthesized based on a SiO2 matrix (CDs@SiO2) and hybridized with a MO matrix (CDs@SiO2-MO) by high-temperature calcination. Among the materials synthesized, Al2O3 matrix RTP CDs (CDs@SiO2-Al2O3) have a long phosphorescence lifetime of 689 ms and can exhibit yellow-green light visible to the naked eye for 9 s after the UV light (365 nm) is turned off. Compared with the green phosphorescence of CDs@SiO2, the yellow-green phosphorescence lifetime of CDs@SiO2-Al2O3 is enhanced by 420 ms. In addition, CDs@SiO2-Al2O3 maintains good stability of phosphorescence emission in water, strongly oxidizing solutions and organic solvents. As a result, CDs@SiO2-Al2O3 can be applied to the field of information encryption and security anti-counterfeiting, and this work provides a new, easy and efficient synthesis method for MO as an RTP CD matrix.

3.
Article in English | MEDLINE | ID: mdl-38598608

ABSTRACT

The core-shell structure is an effective means to improve the stability and optoelectronic properties of cesium lead halide (CsPbX3 (X = Cl, Br, I)) perovskite quantum dots (QDs). However, confined by the ionic radius differences, developing a core-shell packaging strategy suitable for the entire CsPbX3 system remains a challenge. In this study, we introduce an optimized hot-injection method for the epitaxial growth of the CsPb2X5 substrate on CsPbX3 surfaces, achieved by precisely controlling the reaction time and the ratio of lead halide precursors. The synthesized CsPbX3/CsPb2X5 composite microplates exhibit an emission light spectrum that covers the entire visible range. Crystallographic analyses and density functional theory (DFT) calculations reveal a minimal lattice mismatch between the (002) plane of CsPb2X5 and the (11¯0) plane of CsPbX3, facilitating the formation of high-quality type-I heterojunctions. Furthermore, introducing Cl- and I- significantly alters the surface energy of CsPb2X5's (110) plane, leading to an evolutionary morphological shift of grains from circular to square microplates. Benefiting from the passivation of CsPb2X5, the composites exhibit enhanced optical properties and stability. Subsequently, the white light-emitting diode prepared using the CsPbX3/CsPb2X5 composite microplates has a high luminescence efficiency of 136.76 lm/W and the PL intensity decays by only 3.6% after 24 h of continuous operation.

4.
Nanoscale ; 15(26): 11190-11198, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37340973

ABSTRACT

The thermal stability of phosphor materials had long been a bottleneck in their commercialization. Nowadays, cesium lead halide perovskite CsPbBr3 has been considered a potential replacement for the next generation of optoelectronic devices due to its excellent optical and electronic properties, however, the devices inevitably generate high temperatures on the surface under prolonged energization conditions in practical applications, which can be fatal to CsPbBr3. Despite the various strategies that have been employed to improve the thermal stability of CsPbBr3, systematic studies of the thermal stability of the basis CsPbBr3 are lacking. In this study, CsPbBr3 with different dimensions (0D quantum dots (QDs), 1D nanowires (NWs), 2D nanoplate (NPs), 3D micron crystals (MCs)) was prepared by traditional high-temperature thermal injection, and a systematic study was carried out on their optical properties and thermal stability. The results revealed that the dimensional change will directly influence the optical properties as well as the thermal stability of CsPbBr3. In particular, 3D CsPbBr3 MCs maintained relatively high thermal stability under high-temperature environments, which will bring interest for the commercialization of next-generation perovskite optoelectronic devices.

5.
ACS Appl Mater Interfaces ; 15(29): 35216-35226, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37454395

ABSTRACT

Although cesium halide lead (CsPbX3, X = Cl, Br, I) perovskite quantum dots (QDs) have excellent photovoltaic properties, their unstable characteristics are major limitations to application. Previous research has demonstrated that the core-shell structure can significantly improve the stability of CsPbX3 QDs and form heterojunctions at interfaces, enabling multifunctionalization of perovskite materials. In this article, we propose a convenient method to construct core-shell-structured perovskite materials, in which CsPbBr3@CsPb2Br5 core-shell micrometer crystals can be prepared by controlling the ratio of Cs+/Pb2+ in the precursor and the reaction time. The materials exhibited enhanced optical properties and stability that provided for further postprocessing. Subsequently, CsPbBr3@CsPb2Br5@TiO2 composites were obtained by coating a layer of dense TiO2 nanoparticles on the surfaces of micrometer crystals through hydrolysis of titanium precursors. According to density functional theory (DFT) calculations and experimental results, the presence of surface TiO2 promoted delocalization of photogenerated electrons and holes, enabling the CsPbBr3@CsPb2Br5@TiO2 composites to exhibit excellent performance in the field of photocatalysis. In addition, due to passivation of surface defects by CsPb2Br5 and TiO2 shells, the luminous intensity of white light-emitting diodes prepared with the materials only decayed by 2%-3% at high temperatures (>100 °C) when working for 24 h.

6.
Front Chem ; 11: 1199863, 2023.
Article in English | MEDLINE | ID: mdl-37273508

ABSTRACT

The inherent single narrow emission peak and fast anion exchange process of cesium lead halide perovskite CsPbX3 (X = Cl, Br, I) nanocrystals severely limited its application in white light-emitting diodes. Previous studies have shown that composite structures can passivate surface defects of NCs and improve the stability of perovskite materials, but complex post-treatment processes commonly lead to dissolution of NCs. In this study, CsPb(Cl/Br)3 NCs was in-situ grown in TiO2 hollow shells doped with Eu3+ ions by a modified thermal injection method to prepare CsPb(Cl/Br)3/TiO2:Eu3+ composites with direct excitation of white light without additional treatment. Among them, the well-crystalline TiO2 shells acted as both a substrate for the dopant, avoiding the direct doping of Eu3+ into the interior of NCs to affect the crystal structure of the perovskite materials, and also as a protection layer to isolate the contact between PL quenching molecules and NCs, which significantly improves the stability. Further, the WLED prepared using the composites had bright white light emission, luminous efficiency of 87.39 lm/W, and long-time operating stability, which provided new options for the development of perovskite devices.

SELECTION OF CITATIONS
SEARCH DETAIL