Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell ; 167(6): 1540-1554.e12, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912061

ABSTRACT

Therapeutic blocking of the PD1 pathway results in significant tumor responses, but resistance is common. We demonstrate that prolonged interferon signaling orchestrates PDL1-dependent and PDL1-independent resistance to immune checkpoint blockade (ICB) and to combinations such as radiation plus anti-CTLA4. Persistent type II interferon signaling allows tumors to acquire STAT1-related epigenomic changes and augments expression of interferon-stimulated genes and ligands for multiple T cell inhibitory receptors. Both type I and II interferons maintain this resistance program. Crippling the program genetically or pharmacologically interferes with multiple inhibitory pathways and expands distinct T cell populations with improved function despite expressing markers of severe exhaustion. Consequently, tumors resistant to multi-agent ICB are rendered responsive to ICB monotherapy. Finally, we observe that biomarkers for interferon-driven resistance associate with clinical progression after anti-PD1 therapy. Thus, the duration of tumor interferon signaling augments adaptive resistance and inhibition of the interferon response bypasses requirements for combinatorial ICB therapies.


Subject(s)
CTLA-4 Antigen/antagonists & inhibitors , Melanoma/immunology , Melanoma/therapy , Radioimmunotherapy , Animals , B7-H1 Antigen/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Heterografts , Humans , Interferons/immunology , Melanoma/drug therapy , Melanoma/radiotherapy , Mice , Neoplasm Transplantation , STAT1 Transcription Factor , T-Lymphocytes/immunology
2.
Nature ; 520(7547): 373-7, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25754329

ABSTRACT

Immune checkpoint inhibitors result in impressive clinical responses, but optimal results will require combination with each other and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here we report major tumour regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation, and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumours, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T-cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires radiation, anti-CTLA4 and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T-regulatory cells (Treg cells), thereby increasing the CD8 T-cell to Treg (CD8/Treg) ratio. Radiation enhances the diversity of the T-cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while radiation shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T-cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligoclonal T-cell expansion. Similarly to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to radiation plus anti-CTLA4, demonstrated persistent T-cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumours to escape anti-CTLA4-based therapy, and the combination of radiation, anti-CTLA4 and anti-PD-L1 promotes response and immunity through distinct mechanisms.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , Cell Cycle Checkpoints/drug effects , Melanoma/drug therapy , Melanoma/immunology , Melanoma/radiotherapy , T-Lymphocytes/drug effects , T-Lymphocytes/radiation effects , Animals , B7-H1 Antigen/metabolism , Female , Humans , Melanoma/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/drug effects , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/radiation effects
3.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35020792

ABSTRACT

In this issue of JEM, Shakiba et al. (2021. J. Exp. Med. https://doi.org/10.1084/jem.20201966) tell a tale of three tumor infiltrating lymphocytes (TILs). The first TIL was too strong and became exhausted. The second TIL was too weak and became inert. The third TIL lost CD8, and this made it just right.


Subject(s)
Lymphocytes, Tumor-Infiltrating
4.
Cancer Res ; 78(15): 4282-4291, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29844122

ABSTRACT

Immunotherapy in pancreatic ductal adenocarcinoma (PDA) remains a difficult clinical problem despite success in other disease types with immune checkpoint blockade (ICB) and chimeric antigen receptor T-cell therapy. Mechanisms driving immunosuppression and poor T-cell infiltration in PDA are incompletely understood. Here, we use genetically engineered mouse models of PDA that recapitulate hallmarks of human disease to demonstrate that CD40 pathway activation is required for clinical response to radiotherapy and ICB with αCTLA-4 and αPD-1. The combination of an agonist αCD40 antibody, radiotherapy, and dual ICB eradicated irradiated and unirradiated (i.e., abscopal) tumors, generating long-term immunity. Response required T cells and also short-lived myeloid cells and was dependent on the long noncoding RNA myeloid regulator Morrbid Using unbiased random forest machine learning, we built unique, contextual signatures for each therapeutic component, revealing that (i) radiotherapy triggers an early proinflammatory stimulus, ablating existing intratumoral T cells and upregulating MHC class I and CD86 on antigen-presenting cells, (ii) αCD40 causes a systemic and intratumoral reorganization of the myeloid compartment, and (iii) ICB increases intratumoral T-cell infiltration and improves the CD8 T-cell:regulatory T-cell ratio. Thus, αCD40 and radiotherapy nonredundantly augment antitumor immunity in PDA, which is otherwise refractory to ICB, providing a clear rationale for clinical evaluation.Significance: Radiotherapy and αCD40 disrupt key links between innate and adaptive immunity, ameliorating resistance to immune checkpoint blockade in pancreatic cancer via multiple cellular mechanisms. Cancer Res; 78(15); 4282-91. ©2018 AACR.


Subject(s)
CD40 Antigens/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/radiotherapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/radiotherapy , Adaptive Immunity/immunology , Animals , Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/therapy , Cell Line, Tumor , Female , Immune Tolerance/immunology , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Male , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/therapy , Tumor Microenvironment/immunology , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL