Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
PLoS Pathog ; 20(3): e1012064, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38437247

ABSTRACT

Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.


Subject(s)
Potyvirus , Viral Proteins , Viral Proteins/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Potyvirus/metabolism , Plant Diseases
2.
J Virol ; 97(2): e0144422, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36688651

ABSTRACT

P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.


Subject(s)
Host Specificity , Peptide Hydrolases , Potyviridae , Viral Proteins , Zinc Fingers , Host Specificity/genetics , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Potyviridae/genetics , Potyviridae/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Zinc Fingers/genetics
3.
BMC Plant Biol ; 23(1): 56, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36698067

ABSTRACT

BACKGROUND: Areca palm (Areca catechu) is a woody perennial plant of both economical and medicinal importance grown in tropical and subtropical climates. Yet, the molecular biology study of areca palm is extremely impeded by its unavailability of a transformation method. An efficient protoplast isolation and transformation system could be highly desirable to overcome this barrier. RESULTS: Here, we described a simple and efficient method for protoplast isolation and transformation from the perennial plant areca palm. A high yield of protoplasts (2.5 × 107 protoplasts per gram of fresh leaf tissues) was obtained from the fresh light green leaflet from the newly-emerged leaf digested overnight in the enzyme solution [2% (w/v) cellulase R10, 0.5% (w/v) macerozyme R10, 0.7 M mannitol, 10 mM CaCl2, 20 mM KCl, 20 mM MES and 0.1% (w/v) BSA, pH 5.7] by the direct leaf-peeling method. The isolated areca protoplasts maintain viability of 86.6% and have been successfully transformed with a green fluorescent protein (GFP)-tagged plasmid (pGreen0029-GFP, 6.0 kb) via the polyethylene glycol (PEG)-mediated transformation. Moreover, the mannitol concentration (optimal: 0.7 M) was determined as a key factor affecting areca protoplast isolation. We also demonstrated that the optimal density of areca protoplast for efficient transformation was at 1.0-1.5 × 106 cells/ml. With the optimization of transformation parameters, we have achieved a relatively high transformation efficiency of nearly 50%. CONCLUSION: We have established the first efficient protocol for the high-yield isolation and transformation of areca palm protoplasts. This method shall be applied in various biological studies of areca palm, such as gene function analysis, genome editing, protein trafficking and localization and protein-protein interaction. In addition, the protoplast system offers a great genetic transformation approach for the woody perennial plant-areca palm. Moreover, the established platform may be applied in protoplast isolation and transformation for other important species in the palm family, including oil palm and coconut.


Subject(s)
Areca , Arecaceae , Protoplasts/metabolism , Plant Leaves
4.
Phytopathology ; 113(6): 1103-1114, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36576401

ABSTRACT

The genomic 5'-terminal regions of viruses in the family Potyviridae (potyvirids) encode two types of leader proteases: serine-protease (P1) and cysteine-protease (HCPro), which differ greatly in the arrangement and sequence composition among inter-genus viruses. Most potyvirids have the same tandemly arranged P1 and HCPro, whereas viruses in the genus Macluravirus encode a single distinct leader protease, a truncated version of HCPro with yet-unknown functions. We investigated the RNA silencing suppression (RSS) activity and its underpinning mechanism of the distinct HCPro from alpinia oxyphylla mosaic macluravirus (aHCPro). Sequence analysis revealed that macluraviral HCPros have obvious truncations in the N-terminal and middle regions when aligned to their counterparts in potyviruses (well-characterized viral suppressors of RNA silencing). Nearly all defined elements essential for the RSS activity of potyviral counterparts are not distinguished in macluraviral HCPros. Here, we demonstrated that aHCPro exhibits a similar anti-silencing activity with the potyviral counterpart. However, aHCPro fails to block both the local and systemic spreading of RNA silencing. In line, aHCPro interferes with the dsRNA synthesis, an upstream step in the RNA silencing pathway. Affinity-purification and NanoLC-MS/MS analysis revealed that aHCPro has no association with core components or their potential interactors involving in dsRNA synthesis from the protein layer. Instead, the ectopic expression of aHCPro significantly reduces the transcript abundance of RDR2, RDR6, SGS3, and SDE5. This study represents the first report on the anti-silencing function of Macluravirus-encoded HCPro and the underlying molecular mechanism.


Subject(s)
Alpinia , Potyviridae , Potyvirus , Viruses , Potyviridae/genetics , RNA Interference , RNA, Double-Stranded/genetics , Alpinia/genetics , Alpinia/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Tandem Mass Spectrometry , Plant Diseases , Potyvirus/genetics , Viruses/genetics , Peptide Hydrolases/genetics , Nicotiana
5.
Plant J ; 101(2): 384-400, 2020 01.
Article in English | MEDLINE | ID: mdl-31562664

ABSTRACT

Endocytosis and endosomal trafficking play essential roles in diverse biological processes including responses to pathogen attack. It is well established that animal viruses enter host cells through receptor-mediated endocytosis for infection. However, the role of endocytosis in plant virus infection still largely remains unknown. Plant dynamin-related proteins 1 (DRP1) and 2 (DRP2) are the large, multidomain GTPases that participate together in endocytosis. Recently, we have discovered that DRP2 is co-opted by Turnip mosaic virus (TuMV) for infection in plants. We report here that DRP1 is also required for TuMV infection. We show that overexpression of DRP1 from Arabidopsis thaliana (AtDRP1A) promotes TuMV infection, and AtDRP1A interacts with several viral proteins including VPg and cylindrical inclusion (CI), which are the essential components of the virus replication complex (VRC). AtDRP1A colocalizes with the VRC in TuMV-infected cells. Transient expression of a dominant negative (DN) mutant of DRP1A disrupts DRP1-dependent endocytosis and supresses TuMV replication. As adaptor protein (AP) complexes mediate cargo selection for endocytosis, we further investigated the requirement of AP in TuMV infection. Our data suggest that the medium unit of the AP2 complex (AP2ß) is responsible for recognizing the viral proteins as cargoes for endocytosis, and knockout of AP2ß impairs intracellular endosomal trafficking of VPg and CI and inhibits TuMV replication. Collectively, our results demonstrate that DRP1 and AP2ß are two proviral host factors of TuMV and shed light into the involvement of endocytosis and endosomal trafficking in plant virus infection.


Subject(s)
Arabidopsis Proteins/metabolism , Dynamins/metabolism , Plant Viruses/metabolism , RNA Viruses/metabolism , Viral Proteins/metabolism , Arabidopsis Proteins/genetics , Dynamins/genetics , Endocytosis , Endosomes , Gene Expression Regulation, Plant , Gene Knockout Techniques , Host-Pathogen Interactions/physiology , Plant Diseases , Plant Viruses/pathogenicity , Plants, Genetically Modified , Potyvirus , Protein Interaction Domains and Motifs , RNA Viruses/pathogenicity , Nicotiana/genetics , Virus Replication/physiology
6.
New Phytol ; 228(2): 622-639, 2020 10.
Article in English | MEDLINE | ID: mdl-32479643

ABSTRACT

Autophagy is an evolutionarily conserved pathway in eukaryotes that delivers unwanted cytoplasmic materials to the lysosome/vacuole for degradation/recycling. Stimulated autophagy emerges as an integral part of plant immunity against intracellular pathogens. In this study, we used turnip mosaic virus (TuMV) as a model to investigate the involvement of autophagy in plant RNA virus infection. The small integral membrane protein 6K2 of TuMV, known as a marker of the virus replication site and an elicitor of the unfolded protein response (UPR), upregulates the selective autophagy receptor gene NBR1 in a UPR-dependent manner. NBR1 interacts with TuMV NIb, the RNA-dependent RNA polymerase of the virus replication complex (VRC), and the autophagy cargo receptor/adaptor protein ATG8f. The NIb/NBR1/ATG8f interaction complexes colocalise with the 6K2-stained VRC. Overexpression of NBR1 or ATG8f enhances TuMV replication, and deficiency of NBR1 or ATG8f inhibits virus infection. In addition, ATG8f interacts with the tonoplast-specific protein TIP1 and the NBR1/ATG8f-containing VRC is enclosed by the TIP1-labelled tonoplast. In TuMV-infected cells, numerous membrane-bound viral particles are evident in the vacuole. Altogether these results suggest that TuMV activates and manipulates UPR-dependent NBR1-ATG8f autophagy to target the VRC to the tonoplast to promote viral replication and virion accumulation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Potyvirus , Virus Diseases , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Autophagy , Carrier Proteins , Plant Diseases , RNA, Plant , Unfolded Protein Response , Viral Proteins/metabolism
7.
Int J Food Microbiol ; 410: 110494, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38006847

ABSTRACT

Fusarium verticillioides is one of the important mycotoxigenic pathogens of maize since it causes severe yield losses and produces fumonisins (FBs) to threaten human and animal health. Previous studies showed that temperature and water activity (aw) are two pivotal environmental factors affecting F. verticillioides growth and FBs production during maize storage. However, the genome-wide transcriptome analysis of differentially expressed genes (DEGs) in F. verticillioides under the stress combinations of temperature and aw has not been studied in detail. In this study, DEGs of F. verticillioides and their related regulatory pathways were analyzed in response to the stress of temperature and aw combinations using RNA-Seq. The results showed that the optimal growth conditions for F. verticillioides were 0.98 aw and 25 °C, whereas the highest per-unit yield of the fumonisin B1 (FB1) was observed at 0.98 aw and 15 °C. The RNA-seq analysis showed that 9648 DEGs were affected by temperature regardless of aw levels, whereas only 218 DEGs were affected by aw regardless of temperature variations. Gene Ontology (GO) analysis revealed that a decrease in temperature at both aw levels led to a significant upregulation of genes associated with 24 biological processes, while three biological processes were downregulated. Furthermore, when aw was decreased at both temperatures, seven biological processes were significantly upregulated and four were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the genes, whose expression was upregulated when the temperature decreased, were predominantly associated with the proteasome pathway, whereas the genes, whose expression was downregulated when the aw decreased, were mainly linked to amino acid metabolism. For the FB1, except for the FUM15 gene, the other 15 biosynthetic-related genes were highly expressed at 0.98 aw and 15 °C. In addition, the expression pattern analysis of other biosynthetic genes involved in secondary metabolite production and regulation of fumonisins production was conducted to explore how this fungus responds to the stress combinations of temperature and aw. Overall, this study primarily examines the impact of temperature and aw on the growth of F. verticillioides and its production of FB1 using transcriptome data. The findings presented here have the potential to contribute to the development of novel strategies for managing fungal diseases and offer valuable insights for preventing fumonisin contamination in food and feed storage.


Subject(s)
Fumonisins , Fusarium , Humans , Fumonisins/metabolism , Zea mays/genetics , Zea mays/microbiology , Temperature , Water/metabolism , Fusarium/metabolism , Gene Expression Profiling
8.
Pest Manag Sci ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895838

ABSTRACT

BACKGROUND: Telosma mosaic virus (TelMV, Potyvirus, Potyviridae) is an emerging viral pathogen that threatens passion fruit plantations worldwide. However, an efficient strategy for controlling such a virus is not yet available. Cross protection is a phenomenon in which pre-infection of a plant with one mild strain prevents or delays subsequent infection by the same or closely related virus. HC-Pro is the potyviral encoded multifunctional protein involved in several steps of viral infection, including multiplication, movement, transmission and RNA silencing suppression. In this study, we tested whether it is possible to generate attenuated viral strains capable of conferring protection against severe TelMV infection by manipulating the HC-Pro gene. RESULTS: By introducing point mutation into the conserved motif FRNK of HC-Pro that is essential for RNA silencing suppression, we have successfully obtained three attenuated mutants of TelMV (R181K, R181D, and R181E, respectively). These attenuated TelMV mutants could systemically infect passion fruit plants without noticeable symptoms. Pre-inoculation of one of these attenuated mutants confers efficient protection against subsequent infection by severe TelMV strain. Moreover, we demonstrated that the HC-Pros harbored by the attenuated mutants exhibit reduced RNA silencing suppression activity in Nicotiana benthamiana leaves. CONCLUSION: The attenuated TelMV mutants developed in this study that are suitable for cross protection offer a practical, powerful tool to fight against TelMV for sustainable passion fruit production. © 2024 Society of Chemical Industry.

9.
Front Plant Sci ; 14: 1236838, 2023.
Article in English | MEDLINE | ID: mdl-37636087

ABSTRACT

Passion fruit (Passiflora edulis) is a perennial evergreen vine that grows mainly in tropical and subtropical regions due to its nutritional, medicinal and ornamental values. However, the molecular biology study of passion fruit is extremely hindered by the lack of an easy and efficient method for transformation. The protoplast transformation system plays a vital role in plant regeneration, gene function analysis and genome editing. Here, we present a new method ('Cotyledon Peeling Method') for simple and efficient passion fruit protoplast isolation using cotyledon as the source tissue. A high yield (2.3 × 107 protoplasts per gram of fresh tissues) and viability (76%) of protoplasts were obtained upon incubation in the enzyme solution [1% (w/v) cellulase R10, 0.25% (w/v) macerozyme R10, 0.4 M mannitol, 10 mM CaCl2, 20 mM KCl, 20 mM MES and 0.1% (w/v) BSA, pH 5.7] for 2 hours. In addition, we achieved high transfection efficiency of 83% via the polyethylene glycol (PEG)-mediated transformation with a green fluorescent protein (GFP)-tagged plasmid upon optimization. The crucial factors affecting transformation efficiency were optimized as follows: 3 µg of plasmid DNA, 5 min transfection time, PEG concentration at 40% and protoplast density of 100 × 104 cells/ml. Furthermore, the established protoplast system was successfully applied for subcellular localization analysis of multiple fluorescent organelle markers and protein-protein interaction study. Taken together, we report a simple and efficient passion fruit protoplast isolation and transformation system, and demonstrate its usage in transient gene expression for the first time in passion fruit. The protoplast system would provide essential support for various passion fruit biology studies, including genome editing, gene function analysis and whole plant regeneration.

10.
Plant Methods ; 19(1): 78, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537660

ABSTRACT

BACKGROUND: Plant virus vectors designed for virus-mediated protein overexpression (VOX), virus-induced gene silencing (VIGS), and genome editing (VIGE) provide rapid and cost-effective tools for functional genomics studies, biotechnology applications and genome modification in plants. We previously reported that a cassava common mosaic virus (CsCMV, genus Potexvirus)-based VIGS vector was used for rapid gene function analysis in cassava. However, there are no VOX and VIGE vectors available in cassava. RESULTS: In this study, we developed an efficient VOX vector (CsCMV2-NC) for cassava by modifying the CsCMV-based VIGS vector. Specifically, the length of the duplicated putative subgenomic promoter (SGP1) of the CsCMV CP gene was increased to improve heterologous protein expression in cassava plants. The modified CsCMV2-NC-based VOX vector was engineered to express genes encoding green fluorescent protein (GFP), bacterial phytoene synthase (crtB), and Xanthomonas axonopodis pv. manihotis (Xam) type III effector XopAO1 for viral infection tracking, carotenoid biofortification and Xam virulence effector identification in cassava. In addition, we used CsCMV2-NC to deliver single guide RNAs (gMePDS1/2) targeting two loci of the cassava phytoene desaturase gene (MePDS) in Cas9-overexpressing transgenic cassava lines. The CsCMV-gMePDS1/2 efficiently induced deletion mutations of the targeted MePDS with the albino phenotypes in systemically infected cassava leaves. CONCLUSIONS: Our results provide a useful tool for rapid and efficient heterologous protein expression and guide RNA delivery in cassava. This expands the potential applications of CsCMV-based vector in gene function studies, biotechnology research, and precision breeding for cassava.

11.
Methods Mol Biol ; 2400: 43-53, 2022.
Article in English | MEDLINE | ID: mdl-34905189

ABSTRACT

Protoplasts are the naked plant cells lacking the rigid cell wall and have been broadly utilized as an excellent tool to study the molecular virus-plant interactions, particularly at the early stages of the infection process, such as virion disassembly, viral genome translation, intracellular trafficking, and virus replication. Compared to the use of whole plants, the protoplast system has several major advantages in plant virology research, including homogeneous cell populations, high percentage of infected cells, synchronous infection, effects free from other cells/tissues, and ease of extraction of the viral RNA. This chapter describes a simple, streamlined, and efficient protocol for isolation and purification of mesophyll protoplasts from the model plants Arabidopsis thaliana and Nicotiana benthamiana, and subsequent transfection of the isolated protoplasts with a potyvirus infectious clone.


Subject(s)
Protoplasts , Arabidopsis/genetics , Cell Wall , Plant Viruses , Nicotiana , Transfection
12.
Methods Mol Biol ; 2400: 63-73, 2022.
Article in English | MEDLINE | ID: mdl-34905191

ABSTRACT

Viral cell-to-cell movement from the primary infected cells to neighboring cells is an essential step for viruses to establish systemic infection in plants. The classic experimental design for studying this process involves the application of a reporter protein such as ß-glucuronidase (GUS), green fluorescent protein (GFP), or monomeric red fluorescent protein (mRFP or mCherry). However, such experimental settings are unable to unambiguously distinguish primary and secondary infected cells. In recent years, we have developed several double-labeling potyvirus infectious clones. Upon introduction of such vectors into plant leaf tissues, primary infected cells emit dual fluorescence (green and red) whereas secondary infected cells emit only green fluorescence. In this chapter, we provide detailed protocols on (1) construction of a GFP and mCherry-tagged turnip mosaic virus infectious clone, (2) delivery of the recombinant viral clones into plant cells by agroinfiltration, (3) confocal imaging of viral cell-to-cell movement, and (4) analysis of viral systemic infection. Using this dual-color imaging system, we have revealed coat protein (CP) is essential for TuMV cell-to-cell movement. This system provides a valuable and robust tool to study plant virus cell-to-cell movement.


Subject(s)
Plants , Potyvirus , DNA Viruses , Plant Diseases , Plant Leaves , Nicotiana
13.
Viruses ; 14(1)2022 01 14.
Article in English | MEDLINE | ID: mdl-35062353

ABSTRACT

A hypovirulent SZ-2-3y strain isolated from diseased Paris polyphylla was identified as Botrytis cinerea. Interestingly, SZ-2-3y was coinfected with a mitovirus, two botouliviruses, and a 3074 nt fusarivirus, designated Botrytis cinerea fusarivirus 8 (BcFV8); it shares an 87.2% sequence identity with the previously identified Botrytis cinerea fusarivirus 6 (BcFV6). The full-length 2945 nt genome sequence of the mitovirus, termed Botrytis cinerea mitovirus 10 (BcMV10), shares a 54% sequence identity with Fusarium boothii mitovirus 1 (FbMV1), and clusters with fungus mitoviruses, plant mitoviruses and plant mitochondria; hence BcMV10 is a new Mitoviridae member. The full-length 2759 nt and 2812 nt genome sequences of the other two botouliviruses, named Botrytis cinerea botoulivirus 18 and 19 (BcBoV18 and 19), share a 40% amino acid sequence identity with RNA-dependent RNA polymerase protein (RdRp), and these are new members of the Botoulivirus genus of Botourmiaviridae. Horizontal transmission analysis showed that BcBoV18, BcBoV19 and BcFV8 are not related to hypovirulence, suggesting that BcMV10 may induce hypovirulence. Intriguingly, a partial BcMV10 sequence was detected in cucumber plants inoculated with SZ-2-3y mycelium or pXT1/BcMV10 agrobacterium. In conclusion, we identified a hypovirulent SZ-2-3y fungal strain from P. polyphylla, coinfected with four novel mycoviruses that could serve as potential biocontrol agents. Our findings provide evidence of cross-kingdom mycoviral sequence transmission.


Subject(s)
Botrytis/virology , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Liliaceae/microbiology , Botrytis/isolation & purification , Coinfection/microbiology , Coinfection/virology , Fungal Viruses/genetics , Fusarium/virology , Genome, Viral , High-Throughput Nucleotide Sequencing , Liliaceae/genetics , Plant Diseases/virology , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Sequence Analysis, RNA , Viral Proteins/genetics
14.
Food Chem ; 364: 130450, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34217943

ABSTRACT

Alternaria mycotoxins are food-related compounds that are mainly produced by Alternaria fungi species. However, it's difficult for Alternaria mycotoxins analysis, especially for conjugated metabolites in food safety surveillance. In this work, a novel data-dependent acquisition (DDA) full mass scan and products scan protocol was proposed for qualitative and quantitative analysis of five target mycotoxins in tomato samples using ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap). In total, 24 sulfated metabolites were detected with post-data analysis techniques, and two sulfated metabolites (AME-sulfated and AOH-sulfated) were identified in Alternaria fungi -inoculated tomatoes. In addition, a custom database was established, and it was successfully applied for Alternaria mycotoxins and sulfated metabolites screening in tomatoes. With the improvement in high-resolution mass spectrometry (HRMS) as well as post-data analysis techniques, DDA based HRMS method could be widely applied for compound analysis, identification, and screening in quantitative field.


Subject(s)
Alternaria , Mycotoxins , Chromatography, High Pressure Liquid , Food Contamination/analysis , Mass Spectrometry , Mycotoxins/analysis , Sulfates
15.
Front Microbiol ; 12: 755156, 2021.
Article in English | MEDLINE | ID: mdl-34733264

ABSTRACT

Previously, our group characterized two closely related viruses from Areca catechu, areca palm necrotic ringspot virus (ANRSV) and areca palm necrotic spindle-spot virus (ANSSV). These two viruses share a distinct genomic organization of leader proteases and represent the only two species of the newly established genus Arepavirus of the family Potyviridae. The biological features of the two viruses are largely unknown. In this study, we investigated the pathological properties, functional compatibility of viral elements, and interspecies interactions in the model plant, Nicotiana benthamiana. Using a newly obtained infectious clone of ANRSV, we showed that this virus induces more severe symptoms compared with ANSSV and that this is related to a rapid virus multiplication in planta. A series of hybrid viruses were constructed via the substitution of multiple elements in the ANRSV infectious clone with the counterparts of ANSSV. The replacement of either 5'-UTR-HCPro1-HCPro2 or CI effectively supported replication and systemic infection of ANRSV, whereas individual substitution of P3-7K, 9K-NIa, and NIb-CP-3'-UTR abolished viral infectivity. Finally, we demonstrated that ANRSV confers effective exclusion of ANSSV both in coinfection and super-infection assays. These results advance our understanding of fundamental aspects of these two distinct but closely related arepaviruses.

16.
Viruses ; 12(1)2020 01 08.
Article in English | MEDLINE | ID: mdl-31936267

ABSTRACT

Potyviruses represent the largest group of known plant RNA viruses and include many agriculturally important viruses, such as Plum pox virus, Soybean mosaic virus, Turnip mosaic virus, and Potato virus Y. Potyviruses adopt polyprotein processing as their genome expression strategy. Among the 11 known viral proteins, the nuclear inclusion protein b (NIb) is the RNA-dependent RNA polymerase responsible for viral genome replication. Beyond its principal role as an RNA replicase, NIb has been shown to play key roles in diverse virus-host interactions. NIb recruits several host proteins into the viral replication complexes (VRCs), which are essential for the formation of functional VRCs for virus multiplication, and interacts with the sumoylation pathway proteins to suppress NPR1-mediated immunity response. On the other hand, NIb serves as a target of selective autophagy as well as an elicitor of effector-triggered immunity, resulting in attenuated virus infection. These contrasting roles of NIb provide an excellent example of the complex co-evolutionary arms race between plant hosts and potyviruses. This review highlights the current knowledge about the multifunctional roles of NIb in potyvirus infection, and discusses future research directions.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Host Microbial Interactions , Potyvirus/enzymology , Potyvirus/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/genetics , Virus Replication , Autophagy , Plant Diseases/virology , Plants/virology , RNA-Dependent RNA Polymerase/genetics
17.
Mol Plant Pathol ; 21(9): 1194-1211, 2020 09.
Article in English | MEDLINE | ID: mdl-32686275

ABSTRACT

To establish infection, plant viruses are evolutionarily empowered with the ability to spread intercellularly. Potyviruses represent the largest group of known plant-infecting RNA viruses, including many agriculturally important viruses. To better understand intercellular movement of potyviruses, we used turnip mosaic virus (TuMV) as a model and constructed a double-fluorescent (green and mCherry) protein-tagged TuMV infectious clone, which allows distinct observation of primary and secondary infected cells. We conducted a series of deletion and mutation analyses to characterize the role of TuMV coat protein (CP) in viral intercellular movement. TuMV CP has 288 amino acids and is composed of three domains: the N-terminus (amino acids 1-97), the core (amino acids 98-245), and the C-terminus (amino acids 246-288). We found that deletion of CP or its segments amino acids 51-199, amino acids 200-283, or amino acids 265-274 abolished the ability of TuMV to spread intercellularly but did not affect virus replication. Interestingly, deletion of amino acids 6-50 in the N-terminus domain resulted in the formation of aberrant virions but did not significantly compromise TuMV cell-to-cell and systemic movement. We identified the charged residues R178 and D222 within the core domain that are essential for virion formation and TuMV local and systemic transport in plants. Moreover, we found that trans-expression of the wild-type CP either by TuMV or through genetic transformation-based stable expression could not rescue the movement defect of CP mutants. Taken together these results suggest that TuMV CP is not essential for viral genome replication but is indispensable for viral intercellular transport where only the cis-expressed CP is functional.


Subject(s)
Arabidopsis/virology , Capsid Proteins/genetics , Nicotiana/virology , Plant Diseases/virology , Potyvirus/genetics , Virus Replication , Amino Acid Sequence , Arabidopsis/genetics , Capsid Proteins/metabolism , Genes, Reporter , Mutation , Potyvirus/physiology , Protein Stability , Sequence Alignment , Nicotiana/genetics , Virion
SELECTION OF CITATIONS
SEARCH DETAIL