Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Pathog ; 17(7): e1009668, 2021 07.
Article in English | MEDLINE | ID: mdl-34280241

ABSTRACT

SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10-17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/veterinary , Macaca fascicularis/immunology , Macaca fascicularis/virology , Monkey Diseases/immunology , Monkey Diseases/virology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Disease Models, Animal , Female , Humans , Kinetics , Lymphocyte Depletion/veterinary , Male , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , Virus Replication/immunology
2.
Cell Rep Med ; 3(2): 100520, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35233545

ABSTRACT

Effective vaccines are essential for the control of the coronavirus disease 2019 (COVID-19) pandemic. Currently developed vaccines inducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-antigen-specific neutralizing antibodies (NAbs) are effective, but the appearance of NAb-resistant S variant viruses is of great concern. A vaccine inducing S-independent or NAb-independent SARS-CoV-2 control may contribute to containment of these variants. Here, we investigate the efficacy of an intranasal vaccine expressing viral non-S antigens against intranasal SARS-CoV-2 challenge in cynomolgus macaques. Seven vaccinated macaques exhibit significantly reduced viral load in nasopharyngeal swabs on day 2 post-challenge compared with nine unvaccinated controls. The viral control in the absence of SARS-CoV-2-specific NAbs is significantly correlated with vaccine-induced, viral-antigen-specific CD8+ T cell responses. Our results indicate that CD8+ T cell induction by intranasal vaccination can result in NAb-independent control of SARS-CoV-2 infection, highlighting a potential of vaccine-induced CD8+ T cell responses to contribute to COVID-19 containment.


Subject(s)
Administration, Intranasal/methods , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccination/methods , Animals , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Coronavirus Envelope Proteins/immunology , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Disease Models, Animal , Female , Macaca fascicularis , Male , Pandemics/prevention & control , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome , Vero Cells , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL