Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Cell Proteomics ; 15(3): 818-33, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26209608

ABSTRACT

Breast cancer was the second leading cause of cancer related mortality for females in 2014. Recent studies suggest histone H1 phosphorylation may be useful as a clinical biomarker of breast and other cancers because of its ability to recognize proliferative cell populations. Although monitoring a single phosphorylated H1 residue is adequate to stratify high-grade breast tumors, expanding our knowledge of how H1 is phosphorylated through the cell cycle is paramount to understanding its role in carcinogenesis. H1 analysis by bottom-up MS is challenging because of the presence of highly homologous sequence variants expressed by most cells. These highly basic proteins are difficult to analyze by LC-MS/MS because of the small, hydrophilic nature of peptides produced by tryptic digestion. Although bottom-up methods permit identification of several H1 phosphorylation events, these peptides are not useful for observing the combinatorial post-translational modification (PTM) patterns on the protein of interest. To complement the information provided by bottom-up MS, we utilized a top-down MS/MS workflow to permit identification and quantitation of H1 proteoforms related to the progression of breast cells through the cell cycle. Histones H1.2 and H1.4 were observed in MDA-MB-231 metastatic breast cells, whereas an additional histone variant, histone H1.3, was identified only in nonneoplastic MCF-10A cells. Progressive phosphorylation of histone H1.4 was identified in both cell lines at mitosis (M phase). Phosphorylation occurred first at S172 followed successively by S187, T18, T146, and T154. Notably, phosphorylation at S173 of histone H1.2 and S172, S187, T18, T146, and T154 of H1.4 significantly increases during M phase relative to S phase, suggesting that these events are cell cycle-dependent and may serve as markers for proliferation. Finally, we report the observation of the H1.2 SNP variant A18V in MCF-10A cells.


Subject(s)
Breast Neoplasms/metabolism , Histones/metabolism , Tandem Mass Spectrometry/methods , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Female , Humans , Phosphorylation , Polymorphism, Single Nucleotide , Protein Processing, Post-Translational
2.
J Proteome Res ; 15(9): 3196-203, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27431976

ABSTRACT

Histone variants are known to play a central role in genome regulation and maintenance. However, many variants are inaccessible by antibody-based methods or bottom-up tandem mass spectrometry due to their highly similar sequences. For many, the only tractable approach is with intact protein top-down tandem mass spectrometry. Here, ultra-high-resolution FT-ICR MS and MS/MS yield quantitative relative abundances of all detected HeLa H2A and H2B isobaric and isomeric variants with a label-free approach. We extend the analysis to identify and relatively quantitate 16 proteoforms from 12 sequence variants of histone H2A and 10 proteoforms of histone H2B from three other cell lines: human embryonic stem cells (WA09), U937, and a prostate cancer cell line LaZ. The top-down MS/MS approach provides a path forward for more extensive elucidation of the biological role of many previously unstudied histone variants and post-translational modifications.


Subject(s)
Histones/analysis , Proteomics/methods , Cell Line , Cyclotrons , Genetic Variation , Genomic Structural Variation , Histones/genetics , Humans , Protein Processing, Post-Translational , Tandem Mass Spectrometry/methods
3.
Proteomics ; 14(10): 1128-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24723542

ABSTRACT

Ultraviolet photodissociation (UVPD) is a compelling fragmentation technique with great potential to enhance proteomics generally and top-down MS specifically. In this issue, Cannon et al. (Proteomics 2014, 14, XXXX-XXXX) use UVPD to perform top-down MS on several sequence variants of green fluorescent protein and compare the results to CID, higher energy collision induced dissociation, and electron transfer dissociation. As compared to the other techniques UVPD produces a wider variety of fragment ion types that are relatively evenly distributed across the protein sequences. Overall, their results demonstrate enhanced sequence coverage and higher confidence in sequence assignment via UVPD MS. Based on these and other recent results UVPD is certain to become an increasingly widespread and valuable tool for top-down proteomics.


Subject(s)
Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/chemistry , Proteomics/methods , Tandem Mass Spectrometry/methods
4.
Proteomics ; 14(10): 1130-40, 2014 May.
Article in English | MEDLINE | ID: mdl-24644084

ABSTRACT

Pilot Project #1--the identification and characterization of human histone H4 proteoforms by top-down MS--is the first project launched by the Consortium for Top-Down Proteomics (CTDP) to refine and validate top-down MS. Within the initial results from seven participating laboratories, all reported the probability-based identification of human histone H4 (UniProt accession P62805) with expectation values ranging from 10(-13) to 10(-105). Regarding characterization, a total of 74 proteoforms were reported, with 21 done so unambiguously; one new PTM, K79ac, was identified. Inter-laboratory comparison reveals aspects of the results that are consistent, such as the localization of individual PTMs and binary combinations, while other aspects are more variable, such as the accurate characterization of low-abundance proteoforms harboring >2 PTMs. An open-access tool and discussion of proteoform scoring are included, along with a description of general challenges that lie ahead including improved proteoform separations prior to mass spectrometric analysis, better instrumentation performance, and software development.


Subject(s)
Proteomics/methods , Chromatography, Liquid/methods , Cluster Analysis , HeLa Cells , Histones/analysis , Histones/chemistry , Humans , Mass Spectrometry/methods , Pilot Projects , Protein Processing, Post-Translational , Software
5.
MAbs ; 15(1): 2285285, 2023.
Article in English | MEDLINE | ID: mdl-38010385

ABSTRACT

Monoclonal antibodies have become an important class of therapeutics in the last 30 years. Because the mechanism of action of therapeutic antibodies is intimately linked to their binding epitopes, identification of the epitope of an antibody to the antigen plays a central role during antibody drug development. The gold standard of epitope mapping, X-ray crystallography, requires a high degree of proficiency with no guarantee of success. Here, we evaluated six widely used alternative methods for epitope identification (peptide array, alanine scan, domain exchange, hydrogen-deuterium exchange, chemical cross-linking, and hydroxyl radical footprinting) in five antibody-antigen combinations (pembrolizumab+PD1, nivolumab+PD1, ipilimumab+CTLA4, tremelimumab+CTLA4, and MK-5890+CD27). The advantages and disadvantages of each technique are demonstrated by our data and practical advice on when and how to apply specific epitope mapping techniques during the drug development process is provided. Our results suggest chemical cross-linking most accurately identifies the epitope as defined by crystallography.


Subject(s)
Antibodies, Monoclonal , Antigens , Epitope Mapping/methods , Antibodies, Monoclonal/chemistry , CTLA-4 Antigen , Epitopes
6.
J Mass Spectrom ; 50(1): 280-4, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25601704

ABSTRACT

Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole.


Subject(s)
Spectroscopy, Fourier Transform Infrared/methods , Apoproteins/analysis , Cyclotrons , HeLa Cells , Hemoglobins/analysis , Histones/analysis , Humans , Ions , Spectroscopy, Fourier Transform Infrared/instrumentation , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL