Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nature ; 630(8015): 174-180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811723

ABSTRACT

The parasite Cryptosporidium is a leading agent of diarrhoeal disease in young children, and a cause and consequence of chronic malnutrition1,2. There are no vaccines and only limited treatment options3. The parasite infects enterocytes, in which it engages in asexual and sexual replication4, both of which are essential to continued infection and transmission. However, their molecular mechanisms remain largely unclear5. Here we use single-cell RNA sequencing to reveal the gene expression programme of the entire Cryptosporidium parvum life cycle in culture and in infected animals. Diverging from the prevailing model6, we find support for only three intracellular stages: asexual type-I meronts, male gamonts and female gametes. We reveal a highly organized program for the assembly of components at each stage. Dissecting the underlying regulatory network, we identify the transcription factor Myb-M as the earliest determinant of male fate, in an organism that lacks genetic sex determination. Conditional expression of this factor overrides the developmental program and induces widespread maleness, while conditional deletion ablates male development. Both have a profound impact on the infection. A large set of stage-specific genes now provides the opportunity to understand, engineer and disrupt parasite sex and life cycle progression to advance the development of vaccines and treatments.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Gene Expression Regulation , Life Cycle Stages , Transcription, Genetic , Animals , Female , Humans , Male , Mice , Cryptosporidiosis/parasitology , Cryptosporidium parvum/genetics , Cryptosporidium parvum/growth & development , Gene Regulatory Networks , Life Cycle Stages/genetics , Proto-Oncogene Proteins c-myb/genetics , Sex Determination Processes/genetics , Single-Cell Gene Expression Analysis
2.
Science ; 367(6478): 681-684, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32029627

ABSTRACT

Mosquitoes transmit pathogens that kill >700,000 people annually. These insects use body heat to locate and feed on warm-blooded hosts, but the molecular basis of such behavior is unknown. Here, we identify ionotropic receptor IR21a, a receptor conserved throughout insects, as a key mediator of heat seeking in the malaria vector Anopheles gambiae Although Ir21a mediates heat avoidance in Drosophila, we find it drives heat seeking and heat-stimulated blood feeding in Anopheles At a cellular level, Ir21a is essential for the detection of cooling, suggesting that during evolution mosquito heat seeking relied on cooling-mediated repulsion. Our data indicate that the evolution of blood feeding in Anopheles involves repurposing an ancestral thermoreceptor from non-blood-feeding Diptera.


Subject(s)
Anopheles/physiology , Body Temperature , Evolution, Molecular , Host-Seeking Behavior/physiology , Hot Temperature , Receptors, Ionotropic Glutamate/physiology , Thermoreceptors/physiology , Animals , Anopheles/genetics , Blood , Female , Mice , Mutation , Receptors, Ionotropic Glutamate/genetics
SELECTION OF CITATIONS
SEARCH DETAIL