Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters

Publication year range
1.
Mol Biol Evol ; 38(1): 142-151, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32745183

ABSTRACT

We studied five chemically distinct but related 1,3,5-triazine antifolates with regard to their effects on growth of a set of mutants in dihydrofolate reductase. The mutants comprise a combinatorially complete data set of all 16 possible combinations of four amino acid replacements associated with resistance to pyrimethamine in the malaria parasite Plasmodium falciparum. Pyrimethamine was a mainstay medication for malaria for many years, and it is still in use in intermittent treatment during pregnancy or as a partner drug in artemisinin combination therapy. Our goal was to investigate the extent to which the alleles yield similar adaptive topographies and patterns of epistasis across chemically related drugs. We find that the adaptive topographies are indeed similar with the same or closely related alleles being fixed in computer simulations of stepwise evolution. For all but one of the drugs the topography features at least one suboptimal fitness peak. Our data are consistent with earlier results indicating that third order and higher epistatic interactions appear to contribute only modestly to the overall adaptive topography, and they are largely conserved. In regard to drug development, our data suggest that higher-order interactions are likely to be of little value as an advisory tool in the choice of lead compounds.


Subject(s)
Adaptation, Biological/genetics , Epistasis, Genetic , Folic Acid Antagonists , Plasmodium falciparum/genetics , Pyrimethamine , Tetrahydrofolate Dehydrogenase/genetics , Alleles , Drug Resistance/genetics , Evolution, Molecular , Genetic Fitness , Plasmodium falciparum/enzymology , Saccharomyces cerevisiae
2.
Malar J ; 19(1): 379, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33097045

ABSTRACT

BACKGROUND: With increasing interest in eliminating malaria from the Caribbean region, Haiti is one of the two countries on the island of Hispaniola with continued malaria transmission. While the Haitian population remains at risk for malaria, there are a limited number of cases annually, making conventional epidemiological measures such as case incidence and prevalence of potentially limited value for fine-scale resolution of transmission patterns and trends. In this context, genetic signatures may be useful for the identification and characterization of the Plasmodium falciparum parasite population in order to identify foci of transmission, detect outbreaks, and track parasite movement to potentially inform malaria control and elimination strategies. METHODS: This study evaluated the genetic signals based on analysis of 21 single-nucleotide polymorphisms (SNPs) from 462 monogenomic (single-genome) P. falciparum DNA samples extracted from dried blood spots collected from malaria-positive patients reporting to health facilities in three southwestern Haitian departments (Nippes, Grand'Anse, and Sud) in 2016. RESULTS: Assessment of the parasite genetic relatedness revealed evidence of clonal expansion within Nippes and the exchange of parasite lineages between Nippes, Sud, and Grand'Anse. Furthermore, 437 of the 462 samples shared high levels of genetic similarity-at least 20 of 21 SNPS-with at least one other sample in the dataset. CONCLUSIONS: These results revealed patterns of relatedness suggestive of the repeated recombination of a limited number of founding parasite types without significant outcrossing. These genetic signals offer clues to the underlying relatedness of parasite populations and may be useful for the identification of the foci of transmission and tracking of parasite movement in Haiti for malaria elimination.


Subject(s)
DNA, Protozoan/analysis , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide , Haiti
3.
Malar J ; 19(1): 342, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32958025

ABSTRACT

BACKGROUND: Sri Lanka was certified as a malaria-free nation in 2016; however, imported malaria cases continue to be reported. Evidence-based information on the genetic structure/diversity of the parasite populations is useful to understand the population history, assess the trends in transmission patterns, as well as to predict threatening phenotypes that may be introduced and spread in parasite populations disrupting elimination programmes. This study used a previously developed Plasmodium vivax single nucleotide polymorphism (SNP) barcode to evaluate the population dynamics of P. vivax parasite isolates from Sri Lanka and to assess the ability of the SNP barcode for tracking the parasites to its origin. METHODS: A total of 51 P. vivax samples collected during 2005-2011, mainly from three provinces of the country, were genotyped for 40 previously identified P. vivax SNPs using a high-resolution melting (HRM), single-nucleotide barcode method. Minor allele frequencies, linkage disequilibrium, pair-wise FST values, and complexity of infection (COI) were evaluated to determine the genetic diversity. Structure analysis was carried out using STRUCTURE software (Version 2.3.4) and SNP barcode was used to identify the genetic diversity of the local parasite populations collected from different years. Principal component analysis (PCA) was used to determine the clustering according to global geographic regions. RESULTS: The proportion of multi-clone infections was significantly higher in isolates collected during an infection outbreak in year 2007. The minor allele frequencies of the SNPs changed dramatically from year to year. Significant linkage was observed in sample sub-sets from years 2005 and 2007. The majority of the isolates from 2007 consisted of at least two genetically distinct parasite strains. The overall percentage of multi-clone infections for the entire parasite sample was 39.21%. Analysis using STRUCTURE software (Version 2.3.4) revealed the high genetic diversity of the sample sub-set from year 2007. In-silico analysis of these data with those available from other global geographical regions using PCA showed distinct clustering of parasite isolates according to geography, demonstrating the usefulness of the barcode in determining an isolate to be indigenous. CONCLUSIONS: Plasmodium vivax parasite isolates collected during a disease outbreak in year 2007 were more genetically diverse compared to those collected from other years. In-silico analysis using the 40 SNP barcode is a useful tool to track the origin of an isolate of uncertain origin, especially to differentiate indigenous from imported cases. However, an extended barcode with more SNPs may be needed to distinguish highly clonal populations within the country.


Subject(s)
DNA Barcoding, Taxonomic/statistics & numerical data , Malaria, Vivax/transmission , Plasmodium vivax/genetics , Polymorphism, Single Nucleotide , Epidemiological Monitoring , Sri Lanka
4.
Malar J ; 19(1): 276, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32746830

ABSTRACT

BACKGROUND: Malaria elimination efforts can be undermined by imported malaria infections. Imported infections are classified based on travel history. METHODS: A genetic strategy was applied to better understand the contribution of imported infections and to test for local transmission in the very low prevalence region of Richard Toll, Senegal. RESULTS: Genetic relatedness analysis, based upon molecular barcode genotyping data derived from diagnostic material, provided evidence for both imported infections and ongoing local transmission in Richard Toll. Evidence for imported malaria included finding that a large proportion of Richard Toll parasites were genetically related to parasites from Thiès, Senegal, a region of moderate transmission with extensive available genotyping data. Evidence for ongoing local transmission included finding parasites of identical genotype that persisted across multiple transmission seasons as well as enrichment of highly related infections within the households of non-travellers compared to travellers. CONCLUSIONS: These data indicate that, while a large number of infections may have been imported, there remains ongoing local malaria transmission in Richard Toll. These proof-of-concept findings underscore the value of genetic data to identify parasite relatedness and patterns of transmission to inform optimal intervention selection and placement.


Subject(s)
Communicable Diseases, Imported/epidemiology , Malaria, Falciparum/epidemiology , Communicable Diseases, Imported/classification , Communicable Diseases, Imported/parasitology , Incidence , Malaria, Falciparum/classification , Malaria, Falciparum/parasitology , Plasmodium falciparum/isolation & purification , Senegal/epidemiology
5.
Malar J ; 18(1): 219, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31262308

ABSTRACT

BACKGROUND: Deep sequencing of targeted genomic regions is becoming a common tool for understanding the dynamics and complexity of Plasmodium infections, but its lower limit of detection is currently unknown. Here, a new amplicon analysis tool, the Parallel Amplicon Sequencing Error Correction (PASEC) pipeline, is used to evaluate the performance of amplicon sequencing on low-density Plasmodium DNA samples. Illumina-based sequencing of two Plasmodium falciparum genomic regions (CSP and SERA2) was performed on two types of samples: in vitro DNA mixtures mimicking low-density infections (1-200 genomes/µl) and extracted blood spots from a combination of symptomatic and asymptomatic individuals (44-653,080 parasites/µl). Three additional analysis tools-DADA2, HaplotypR, and SeekDeep-were applied to both datasets and the precision and sensitivity of each tool were evaluated. RESULTS: Amplicon sequencing can contend with low-density samples, showing reasonable detection accuracy down to a concentration of 5 Plasmodium genomes/µl. Due to increased stochasticity and background noise, however, all four tools showed reduced sensitivity and precision on samples with very low parasitaemia (< 5 copies/µl) or low read count (< 100 reads per amplicon). PASEC could distinguish major from minor haplotypes with an accuracy of 90% in samples with at least 30 Plasmodium genomes/µl, but only 61% at low Plasmodium concentrations (< 5 genomes/µl) and 46% at very low read counts (< 25 reads per amplicon). The four tools were additionally used on a panel of extracted parasite-positive blood spots from natural malaria infections. While all four identified concordant patterns of complexity of infection (COI) across four sub-Saharan African countries, COI values obtained for individual samples differed in some cases. CONCLUSIONS: Amplicon deep sequencing can be used to determine the complexity and diversity of low-density Plasmodium infections. Despite differences in their approach, four state-of-the-art tools resolved known haplotype mixtures with similar sensitivity and precision. Researchers can therefore choose from multiple robust approaches for analysing amplicon data, however, error filtration approaches should not be uniformly applied across samples of varying parasitaemia. Samples with very low parasitaemia and very low read count have higher false positive rates and call for read count thresholds that are higher than current default recommendations.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Malaria, Falciparum/diagnosis , Parasitemia/diagnosis , Plasmodium falciparum/isolation & purification , Sensitivity and Specificity
6.
J Infect Dis ; 217(4): 622-627, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29325146

ABSTRACT

Dramatic changes in transmission intensity can impact Plasmodium population diversity. Using samples from 2 distant time-points in the Dielmo/Ndiop longitudinal cohorts from Senegal, we applied a molecular barcode tool to detect changes in parasite genotypes and complexity of infection that corresponded to changes in transmission intensity. We observed a striking statistically significant difference in genetic diversity between the 2 parasite populations. Furthermore, we identified a genotype in Dielmo and Ndiop previously observed in Thiès, potentially implicating imported malaria. This genetic surveillance study validates the molecular barcode as a tool to assess parasite population diversity changes and track parasite genotypes.


Subject(s)
Genetics, Population , Genotype , Malaria/parasitology , Plasmodium/classification , Plasmodium/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Barcoding, Taxonomic , Female , Genome, Protozoan , Humans , Infant , Longitudinal Studies , Male , Plasmodium/isolation & purification , Senegal , Young Adult
7.
Malar J ; 17(1): 472, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30558627

ABSTRACT

BACKGROUND: Plasmodium falciparum malaria remains a major health challenge in Nigeria despite the global decline of its incidence and mortality rates. Although significant progress has been made in preventing the transmission of P. falciparum and controlling the spread of the infection, there is much to be done in the area of proper monitoring, surveillance of the parasite, investigating the population dynamics and drug resistance profiling of the parasite as these are important to its eventual eradication. Polymorphic loci of msp1, msp2 and/or glurp genes or microsatellites have been traditionally used to characterize P. falciparum population structure in various parts of Nigeria. The lack of standardization in the interpretation of results, as well as the inability of these methods to distinguish closely related parasites, remains a limitation of these techniques. Conversely, the recently developed 24 single nucleotide polymorphism (SNP)-based molecular barcode assay has the possibility of differentiating between closely related parasites and offer additional information in determining the population diversity of P. falciparum within and between parasite populations. This study is therefore aimed at defining the population diversity of P. falciparum in and between two localities in Nigeria using the SNPs barcode technique. METHODS: The 24-SNP high-resolution melt (HRM) barcode assay and msp2 genotyping was used to investigate both intra and inter population diversity of the parasite population in two urban cities of Nigeria. RESULTS: Based on SNP barcode analysis, polygenomic malaria infections were observed in 17.9% and 13.5% of population from Enugu and Ibadan, respectively, while msp2 analyses showed 21% and 19.4% polygenomic infections in Enugu and Ibadan, respectively. Low levels of genetic diversity (π) of 0.328 and 0.318 were observed in Enugu and Ibadan parasite populations, respectively, while the FST value of 0.02 (p = 0.055) was obtained when the genetic divergence of both populations was considered. CONCLUSIONS: The 24-SNP barcode assay was effective in analysing P. falciparum population diversity. This study also showed that P. falciparum populations in Enugu and Ibadan had a degree of intra-population diversity, but very low divergence between the population. A low degree of polygenomic infections were also observed in the two parasite populations unlike previous years. This maybe as a result of the effect of artemisinin-based combination therapy (ACT), long-lasting insecticide-treated nets (LLITNs) and intermittent preventive treatments in the study populations.


Subject(s)
Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide , Amino Acid Sequence , DNA Barcoding, Taxonomic , Genetic Variation , Nigeria , Population Dynamics
8.
Proc Natl Acad Sci U S A ; 112(22): 7067-72, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25941365

ABSTRACT

To study the effects of malaria-control interventions on parasite population genomics, we examined a set of 1,007 samples of the malaria parasite Plasmodium falciparum collected in Thiès, Senegal between 2006 and 2013. The parasite samples were genotyped using a molecular barcode of 24 SNPs. About 35% of the samples grouped into subsets with identical barcodes, varying in size by year and sometimes persisting across years. The barcodes also formed networks of related groups. Analysis of 164 completely sequenced parasites revealed extensive sharing of genomic regions. In at least two cases we found first-generation recombinant offspring of parents whose genomes are similar or identical to genomes also present in the sample. An epidemiological model that tracks parasite genotypes can reproduce the observed pattern of barcode subsets. Quantification of likelihoods in the model strongly suggests a reduction of transmission from 2006-2010 with a significant rebound in 2012-2013. The reduced transmission and rebound were confirmed directly by incidence data from Thiès. These findings imply that intensive intervention to control malaria results in rapid and dramatic changes in parasite population genomics. The results also suggest that genomics combined with epidemiological modeling may afford prompt, continuous, and cost-effective tracking of progress toward malaria elimination.


Subject(s)
Epidemiological Monitoring , Genetic Variation , Genetics, Population/methods , Malaria/epidemiology , Malaria/parasitology , Plasmodium falciparum/genetics , Genotype , Humans , Malaria/transmission , Models, Genetic , Senegal/epidemiology
9.
Malar J ; 16(1): 9, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28049489

ABSTRACT

BACKGROUND: Expanded malaria control efforts in Sénégal have resulted in increased use of rapid diagnostic tests (RDT) to identify the primary disease-causing Plasmodium species, Plasmodium falciparum. However, the type of RDT utilized in Sénégal does not detect other malaria-causing species such as Plasmodium ovale spp., Plasmodium malariae, or Plasmodium vivax. Consequently, there is a lack of information about the frequency and types of malaria infections occurring in Sénégal. This study set out to better determine whether species other than P. falciparum were evident among patients evaluated for possible malaria infection in Kédougou, Sénégal. METHODS: Real-time polymerase chain reaction speciation assays for P. vivax, P. ovale spp., and P. malariae were developed and validated by sequencing and DNA extracted from 475 Plasmodium falciparum-specific HRP2-based RDT collected between 2013 and 2014 from a facility-based sample of symptomatic patients from two health clinics in Kédougou, a hyper-endemic region in southeastern Sénégal, were analysed. RESULTS: Plasmodium malariae (n = 3) and P. ovale wallikeri (n = 2) were observed as co-infections with P. falciparum among patients with positive RDT results (n = 187), including one patient positive for all three species. Among 288 negative RDT samples, samples positive for P. falciparum (n = 24), P. ovale curtisi (n = 3), P. ovale wallikeri (n = 1), and P. malariae (n = 3) were identified, corresponding to a non-falciparum positivity rate of 2.5%. CONCLUSIONS: These findings emphasize the limitations of the RDT used for malaria diagnosis and demonstrate that non-P. falciparum malaria infections occur in Sénégal. Current RDT used for routine clinical diagnosis do not necessarily provide an accurate reflection of malaria transmission in Kédougou, Sénégal, and more sensitive and specific methods are required for diagnosis and patient care, as well as surveillance and elimination activities. These findings have implications for other malaria endemic settings where species besides P. falciparum may be transmitted and overlooked by control or elimination activities.


Subject(s)
Malaria/epidemiology , Plasmodium malariae/isolation & purification , Plasmodium ovale/isolation & purification , Plasmodium vivax/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Diagnostic Tests, Routine/methods , Female , Humans , Infant , Male , Middle Aged , Plasmodium malariae/classification , Plasmodium malariae/genetics , Plasmodium ovale/classification , Plasmodium ovale/genetics , Plasmodium vivax/classification , Plasmodium vivax/genetics , Prevalence , Real-Time Polymerase Chain Reaction , Senegal/epidemiology , Sensitivity and Specificity , Young Adult
10.
Malar J ; 16(1): 153, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28420422

ABSTRACT

BACKGROUND: Emergence and spread of drug resistance to every anti-malarial used to date, creates an urgent need for development of sensitive, specific and field-deployable molecular tools for detection and surveillance of validated drug resistance markers. Such tools would allow early detection of mutations in resistance loci. The aim of this study was to compare common population signatures and drug resistance marker frequencies between two populations with different levels of malaria endemicity and history of anti-malarial drug use: Tanzania and Sénégal. This was accomplished by implementing a high resolution melting assay to study molecular markers of drug resistance as compared to polymerase chain reaction-restriction fragment length polymorphism (PCR/RFLP) methodology. METHODS: Fifty blood samples were collected each from a lowly malaria endemic site (Sénégal), and a highly malaria endemic site (Tanzania) from patients presenting with uncomplicated Plasmodium falciparum malaria at clinic. Data representing the DHFR were derived using both PCR-RFLP and HRM assay; while genotyping data representing the DHPS were evaluated in Senegal and Tanzania using HRM. Msp genotyping analysis was used to characterize the multiplicity of infection in both countries. RESULTS: A high prevalence of samples harbouring mutant DHFR alleles was observed in both population using both genotyping techniques. HRM was better able to detect mixed alleles compared to PCR/RFLP for DHFR codon 51 in Tanzania; and only HRM was able to detect mixed infections from Senegal. A high prevalence of mutant alleles in DHFR (codons 51, 59, 108) and DHPS (codon 437) were found among samples from Sénégal while no mutations were observed at DHPS codons 540 and 581, from both countries. Overall, the frequency of samples harbouring either a single DHFR mutation (S108N) or double mutation in DHFR (C59R/S108N) was greater in Sénégal compared to Tanzania. CONCLUSION: Here the results demonstrate that HRM is a rapid, sensitive, and field-deployable alternative technique to PCR-RFLP genotyping that is useful in populations harbouring more than one parasite genome (polygenomic infections). In this study, a high levels of resistance polymorphisms was observed in both dhfr and dhps, among samples from Tanzania and Sénégal. A routine monitoring by molecular markers can be a way to detect emergence of resistance involving a change in the treatment policy.


Subject(s)
Dihydropteroate Synthase/genetics , Drug Resistance , Molecular Diagnostic Techniques/methods , Plasmodium/enzymology , Point-of-Care Systems , Tetrahydrofolate Dehydrogenase/genetics , Transition Temperature , Adolescent , Child , Child, Preschool , Genotype , Genotyping Techniques/methods , Humans , Malaria, Falciparum/parasitology , Plasmodium/drug effects , Plasmodium/genetics , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Senegal , Tanzania , Young Adult
11.
BMC Infect Dis ; 17(1): 307, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28438137

ABSTRACT

BACKGROUND: Following its recent certification as malaria-free, imported infections now pose the greatest threat for maintaining this status in Sri Lanka. Imported infections may also introduce species that are uncommon or not previously endemic to these areas. We highlight in this case report the increasing importance of less common malaria species such as Plasmodium ovale in elimination settings and discuss its relevance for the risk of malaria resurgence in the country. CASE PRESENTATION: A 41-year-old patient from southern Sri Lanka was diagnosed with malaria after 8 days of fever. Microscopy of blood smears revealed parasites morphologically similar to P. vivax and the rapid diagnostic test was indicative of non-P. falciparum malaria. He was treated with chloroquine over 3 days and primaquine for 14 days. He was negative for malaria at a one-year follow-up. Molecular testing performed subsequently confirmed that infection was caused by P. ovale curtisi. The patient gave a history of P. vivax malaria treated with chloroquine and primaquine. He also provided a history of travel to malaria endemic regions, including residing in Liberia from May 2012 to November 2013, throughout which he was on weekly malaria prophylaxis with mefloquine. He had also visited India on an eight-day Buddhist pilgrimage tour in September 2014 without malaria prophylaxis. CONCLUSIONS: It is crucial that every case of malaria is investigated thoroughly and necessary measures taken to prevent re-introduction of malaria. Accurate molecular diagnostic techniques need to be established in Sri Lanka for the screening and diagnosis of all species of human malaria infections, especially those that may occur with low parasitemia and are likely to be undetected using the standard techniques currently in use. In addition, ascertaining whether an infection occurred through local transmission or by importation is critical in the implementation of an effective plan of action in the country. This new era emphasizes the global nature of regional malaria elimination. Increasing global surveillance and tool development are necessary in order to "fingerprint" parasites and identify their origin.


Subject(s)
Antimalarials/therapeutic use , Malaria, Vivax/parasitology , Malaria/diagnosis , Plasmodium ovale/isolation & purification , Adult , Chloroquine/therapeutic use , Fever , Humans , Liberia , Malaria/drug therapy , Malaria/epidemiology , Malaria/parasitology , Malaria, Vivax/drug therapy , Male , Molecular Diagnostic Techniques , Parasitemia , Plasmodium ovale/genetics , Primaquine/therapeutic use , Risk , Sri Lanka/epidemiology , Travel
12.
Infect Immun ; 83(1): 276-85, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25368109

ABSTRACT

As the intensity of malaria transmission has declined, Plasmodium falciparum parasite populations have displayed decreased clonal diversity resulting from the emergence of many parasites with common genetic signatures (CGS). We have monitored such CGS parasite clusters from 2006 to 2013 in Thiès, Senegal, using the molecular barcode. The first, and one of the largest observed clusters of CGS parasites, was present in 24% of clinical isolates in 2008, declined to 3.4% of clinical isolates in 2009, and then disappeared. To begin to explore the relationship between the immune responses of the population and the emergence and decline of specific parasite genotypes, we have determined whether antibodies to CGS parasites correlate with their prevalence. We measured (i) antibodies capable of inhibiting parasite growth in culture and (ii) antibodies recognizing the surfaces of infected erythrocytes (RBCs). IgG obtained from volunteers in 2009 showed increased reactivity to the surfaces of CGS-parasitized erythrocytes over IgG from 2008. Since P. falciparum EMP-1 (PfEMP-1) is a major variant surface antigen, we used var Ups quantitative reverse transcription-PCR (qRT-PCR) and sequencing with degenerate DBL1α domain primers to characterize the var genes expressed by CGS parasites after short-term in vitro culture. CGS parasites show upregulation of UpsA var genes and 2-cysteine-containing PfEMP-1 molecules and express the same dominant var transcript. Our work indicates that the CGS parasites in this cluster express similar var genes, more than would be expected by chance in the population, and that there is year-to-year variation in immune recognition of surface antigens on CGS parasite-infected erythrocytes. This study lays the groundwork for detailed investigations of the mechanisms driving the expansion or contraction of specific parasite clones in the population.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Antigens, Protozoan/genetics , Cluster Analysis , DNA Barcoding, Taxonomic , Humans , Immunoglobulin G/blood , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Senegal/epidemiology
13.
Malar J ; 14: 373, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26415927

ABSTRACT

BACKGROUND: The World Health Organization has recommended rapid diagnostic tests (RDTs) for use in the diagnosis of suspected malaria cases. In addition to providing quick and accurate detection of Plasmodium parasite proteins in the blood, these tests can be used as sources of DNA for further genetic studies. As sulfadoxine-pyrimethamine is used currently for intermittent presumptive treatment of pregnant women in both Senegal and in the Comoros Islands, resistance mutations in the dhfr and dhps genes were investigated using DNA extracted from RDTs. METHODS: The proximal portion of the nitrocellulose membrane of discarded RDTs was used for DNA extraction. This genomic DNA was amplified using HRM to genotype the molecular markers involved in resistance to sulfadoxine-pyrimethamine: dhfr (51, 59, 108, and 164) and dhps (436, 437, 540, 581, and 613). Additionally, the msp1 and msp2 genes were amplified to determine the average clonality between Grande-Comore (Comoros) and Thiès (Senegal). RESULTS: A total of 201 samples were successfully genotyped at all codons by HRM; whereas, in 200 msp1 and msp2 genes were successfully amplified and genotyped by nested PCR. A high prevalence of resistance mutations were observed in the dhfr gene at codons 51, 59, and 108 as well as in the dhps gene at codons 437 and 436. A novel mutant in dhps at codon positions 436Y/437A was observed. The dhfr I164L codon and dhps K540 and dhps A581G codons had 100 % wild type alleles in all samples. CONCLUSION: The utility of field-collected RDTs was validated as a source of DNA for genetic studies interrogating frequencies of drug resistance mutations, using two different molecular methods (PCR and High Resolution Melting). RDTs should not be discarded after use as they can be a valuable source of DNA for genetic and epidemiological studies in sites where filter paper or venous blood collected samples are nonexistent.


Subject(s)
DNA, Protozoan/genetics , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Reagent Kits, Diagnostic/parasitology , Antimalarials/pharmacology , Base Sequence , Comoros/epidemiology , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Molecular Sequence Data , Mutation/genetics , Parasitology , Prevalence , Protozoan Proteins/genetics , Senegal/epidemiology
14.
Malar J ; 14: 4, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25599890

ABSTRACT

BACKGROUND: Complex malaria infections are defined as those containing more than one genetically distinct lineage of Plasmodium parasite. Complexity of infection (COI) is a useful parameter to estimate from patient blood samples because it is associated with clinical outcome, epidemiology and disease transmission rate. This manuscript describes a method for estimating COI using likelihood, called COIL, from a panel of bi-allelic genotyping assays. METHODS: COIL assumes that distinct parasite lineages in complex infections are unrelated and that genotyped loci do not exhibit significant linkage disequilibrium. Using the population minor allele frequency (MAF) of the genotyped loci, COIL uses the binomial distribution to estimate the likelihood of a COI level given the prevalence of observed monomorphic or polymorphic genotypes within each sample. RESULTS: COIL reliably estimates COI up to a level of three or five with at least 24 or 96 unlinked genotyped loci, respectively, as determined by in silico simulation and empirical validation. Evaluation of COI levels greater than five in patient samples may require a very large collection of genotype data, making sequencing a more cost-effective approach for evaluating COI under conditions when disease transmission is extremely high. Performance of the method is positively correlated with the MAF of the genotyped loci. COI estimates from existing SNP genotype datasets create a more detailed portrait of disease than analyses based simply on the number of polymorphic genotypes observed within samples. CONCLUSIONS: The capacity to reliably estimate COI from a genome-wide panel of SNP genotypes provides a potentially more accurate alternative to methods relying on PCR amplification of a small number of loci for estimating COI. This approach will also increase the number of applications of SNP genotype data, providing additional motivation to employ SNP barcodes for studies of disease epidemiology or control measure efficacy. The COIL program is available for download from GitHub, and users may also upload their SNP genotype data to a web interface for simple and efficient determination of sample COI.


Subject(s)
Computational Biology/methods , Malaria/parasitology , Models, Statistical , Plasmodium/genetics , Polymorphism, Single Nucleotide/genetics , DNA, Protozoan/genetics , Gene Frequency/genetics , Genotype , Humans , Malaria/classification , Malaria/physiopathology , Software
15.
PLoS Genet ; 7(4): e1001383, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21533027

ABSTRACT

The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (∼ 1 SNP/kb), and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS), searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Genetic Loci , Plasmodium falciparum/genetics , Ethanolamines/pharmacology , Fluorenes/pharmacology , Gene Dosage , Gene Expression , Genetic Association Studies , Genetic Variation , Genotype , Haplotypes , Linkage Disequilibrium , Lumefantrine , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Mefloquine/pharmacology , Phenanthrenes/pharmacology , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide , Selection, Genetic
16.
Malar J ; 12: 441, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24314037

ABSTRACT

BACKGROUND: Malaria treatment efforts are hindered by the rapid emergence and spread of drug resistant parasites. Simple assays to monitor parasite drug response in direct patient samples (ex vivo) can detect drug resistance before it becomes clinically apparent, and can inform changes in treatment policy to prevent the spread of resistance. METHODS: Parasite drug responses to amodiaquine, artemisinin, chloroquine and mefloquine were tested in approximately 400 Plasmodium falciparum malaria infections in Thiès, Senegal between 2008 and 2011 using a DAPI-based ex vivo drug resistance assay. Drug resistance-associated mutations were also genotyped in pfcrt and pfmdr1. RESULTS: Parasite drug responses changed between 2008 and 2011, as parasites became less sensitive to amodiaquine, artemisinin and chloroquine over time. The prevalence of known resistance-associated mutations also changed over time. Decreased amodiaquine sensitivity was associated with sustained, highly prevalent mutations in pfcrt, and one mutation in pfmdr1 - Y184F - was associated with decreased parasite sensitivity to artemisinin. CONCLUSIONS: Directly measuring ex vivo parasite drug response and resistance mutation genotyping over time are useful tools for monitoring parasite drug responses in field samples. Furthermore, these data suggest that the use of amodiaquine and artemisinin derivatives in combination therapies is selecting for increased drug tolerance within this population.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/drug effects , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Adolescent , Adult , Animals , Drug Resistance/genetics , Female , Humans , Inhibitory Concentration 50 , Male , Plasmodium falciparum/genetics , Prevalence , Reproducibility of Results , Senegal , Young Adult
17.
bioRxiv ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37546743

ABSTRACT

Long-read sequencing (LRS) technologies have the potential to revolutionize scientific discoveries in RNA biology, especially by enabling the comprehensive identification and quantification of full length mRNA isoforms. However, inherently high error rates make the analysis of long-read sequencing data challenging. While these error rates have been characterized for sequence and splice site identification, it is still unclear how accurately LRS reads represent transcript start and end sites. Here, we systematically assess the variability and accuracy of mRNA terminal ends identified by LRS reads across multiple sequencing platforms. We find substantial inconsistencies in both the start and end coordinates of LRS reads spanning a gene, such that LRS reads often fail to accurately recapitulate annotated or empirically derived terminal ends of mRNA molecules. To address this challenge, we introduce an approach to condition reads based on empirically derived terminal ends and identified a subset of reads that are more likely to represent full-length transcripts. Our approach can improve transcriptome analyses by enhancing the fidelity of transcript terminal end identification, but may result in lower power to quantify genes or discover novel isoforms. Thus, it is necessary to be cautious when selecting sequencing approaches and/or interpreting data from long-read RNA sequencing.

18.
Malar J ; 11: 35, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22314206

ABSTRACT

BACKGROUND: Cerebral malaria, a severe form of Plasmodium falciparum infection, is an important cause of mortality in sub-Saharan African children. A Taqman 24 Single Nucleotide Polymorphisms (SNP) molecular barcode assay was developed for use in laboratory parasites which estimates genotype number and identifies the predominant genotype. METHODS: The 24 SNP assay was used to determine predominant genotypes in blood and tissues from autopsy and clinical patients with cerebral malaria. RESULTS: Single genotypes were shared between the peripheral blood, the brain, and other tissues of cerebral malaria patients, while malaria-infected patients who died of non-malarial causes had mixed genetic signatures in tissues examined. Children with retinopathy-positive cerebral malaria had significantly less complex infections than those without retinopathy (OR = 3.7, 95% CI [1.51-9.10]).The complexity of infections significantly decreased over the malaria season in retinopathy-positive patients compared to retinopathy-negative patients. CONCLUSIONS: Cerebral malaria patients harbour a single or small set of predominant parasites; patients with incidental parasitaemia sustain infections involving diverse genotypes. Limited diversity in the peripheral blood of cerebral malaria patients and correlation with tissues supports peripheral blood samples as appropriate for genome-wide association studies of parasite determinants of pathogenicity.


Subject(s)
DNA, Protozoan/genetics , Malaria, Cerebral/parasitology , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Blood/parasitology , Child , Child, Preschool , Cluster Analysis , Genotype , Humans , Infant , Malawi , Molecular Typing , Parasitemia/parasitology , Plasmodium falciparum/isolation & purification , Polymorphism, Single Nucleotide
19.
Sci Rep ; 12(1): 938, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35042879

ABSTRACT

Molecular epidemiology using genomic data can help identify relationships between malaria parasite population structure, malaria transmission intensity, and ultimately help generate actionable data to assess the effectiveness of malaria control strategies. Genomic data, coupled with geographic information systems data, can further identify clusters or hotspots of malaria transmission, parasite genetic and spatial connectivity, and parasite movement by human or mosquito mobility over time and space. In this study, we performed longitudinal genomic surveillance in a cohort of 70 participants over four years from different neighborhoods and households in Thiès, Senegal-a region of exceptionally low malaria transmission (entomological inoculation rate less than 1). Genetic identity (identity by state, IBS) was established using a 24-single nucleotide polymorphism molecular barcode, identity by descent was calculated from whole genome sequence data, and a hierarchical Bayesian regression model was used to establish genetic and spatial relationships. Our results show clustering of genetically similar parasites within households and a decline in genetic similarity of parasites with increasing distance. One household showed extremely high diversity and warrants further investigation as to the source of these diverse genetic types. This study illustrates the utility of genomic data with traditional epidemiological approaches for surveillance and detection of trends and patterns in malaria transmission not only by neighborhood but also by household. This approach can be implemented regionally and countrywide to strengthen and support malaria control and elimination efforts.


Subject(s)
Genomics/methods , Malaria/transmission , Plasmodium falciparum/genetics , Adolescent , Animals , Child , Child, Preschool , Cluster Analysis , Cohort Studies , Female , Genome, Microbial/genetics , Genotype , Humans , Malaria/epidemiology , Malaria/parasitology , Malaria, Falciparum/parasitology , Male , Molecular Epidemiology/methods , Physical Distancing , Polymorphism, Single Nucleotide/genetics , Senegal/epidemiology
20.
Article in English | MEDLINE | ID: mdl-34333350

ABSTRACT

The use of antimalarial drugs is an effective strategy in the fight against malaria. However, selection of drug resistant parasites is a constant threat to the continued use of this approach. Antimalarial drugs are used not only to treat infections but also as part of population-level strategies to reduce malaria transmission toward elimination. While there is strong evidence that the ongoing use of antimalarial drugs increases the risk of the emergence and spread of drug-resistant parasites, it is less clear how population-level use of drug-based interventions like seasonal malaria chemoprevention (SMC) or mass drug administration (MDA) may contribute to drug resistance or loss of drug efficacy. Critical to sustained use of drug-based strategies for reducing the burden of malaria is the surveillance of population-level signals related to transmission reduction and resistance selection. Here we focus on Plasmodium falciparum and discuss the genetic signatures of a parasite population that are correlated with changes in transmission and related to drug pressure and resistance as a result of drug use. We review the evidence for MDA and SMC contributing to malaria burden reduction and drug resistance selection and examine the use and impact of these interventions in Senegal. Throughout we consider best strategies for ongoing surveillance of both population and resistance signals in the context of different parasite population parameters. Finally, we propose a roadmap for ongoing surveillance during population-level drug-based interventions to reduce the global malaria burden.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Pharmaceutical Preparations , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL