ABSTRACT
Although BCL2 mutations are reported as later occurring events leading to venetoclax resistance, many other mechanisms of progression have been reported though remain poorly understood. Here, we analyze longitudinal tumor samples from 11 patients with disease progression while receiving venetoclax to characterize the clonal evolution of resistance. All patients tested showed increased in vitro resistance to venetoclax at the posttreatment time point. We found the previously described acquired BCL2-G101V mutation in only 4 of 11 patients, with 2 patients showing a very low variant allele fraction (0.03%-4.68%). Whole-exome sequencing revealed acquired loss(8p) in 4 of 11 patients, of which 2 patients also had gain (1q21.2-21.3) in the same cells affecting the MCL1 gene. In vitro experiments showed that CLL cells from the 4 patients with loss(8p) were more resistant to venetoclax than cells from those without it, with the cells from 2 patients also carrying gain (1q21.2-21.3) showing increased sensitivity to MCL1 inhibition. Progression samples with gain (1q21.2-21.3) were more susceptible to the combination of MCL1 inhibitor and venetoclax. Differential gene expression analysis comparing bulk RNA sequencing data from pretreatment and progression time points of all patients showed upregulation of proliferation, B-cell receptor (BCR), and NF-κB gene sets including MAPK genes. Cells from progression time points demonstrated upregulation of surface immunoglobulin M and higher pERK levels compared with those from the preprogression time point, suggesting an upregulation of BCR signaling that activates the MAPK pathway. Overall, our data suggest several mechanisms of acquired resistance to venetoclax in CLL that could pave the way for rationally designed combination treatments for patients with venetoclax-resistant CLL.
Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Resistance, Neoplasm/genetics , Exome Sequencing , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2ABSTRACT
Although the development of multiple primary tumors in smokers with lung cancer can be attributed to carcinogen-induced field cancerization, the occurrence of multiple tumors at presentation in individuals with EGFR-mutant lung cancer who lack known environmental exposures remains unexplained. In the present study, we identified ten patients with early stage, resectable, non-small cell lung cancer who presented with multiple, anatomically distinct, EGFR-mutant tumors. We analyzed the phylogenetic relationships among multiple tumors from each patient using whole-exome sequencing (WES) and hypermutable poly(guanine) (poly(G)) repeat genotyping as orthogonal methods for lineage tracing. In four patients, developmental mosaicism, assessed by WES and poly(G) lineage tracing, indicates a common non-germline cell of origin. In two other patients, we identified germline EGFR variants, which confer moderately enhanced signaling when modeled in vitro. Thus, in addition to germline variants, developmental mosaicism defines a distinct mechanism of genetic predisposition to multiple EGFR-mutant primary tumors, with implications for their etiology and clinical management.
ABSTRACT
PIK3CA mutations occur in â¼8% of cancers, including â¼40% of HR-positive breast cancers, where the PI3K-alpha (PI3Kα)-selective inhibitor alpelisib is FDA approved in combination with fulvestrant. Although prior studies have identified resistance mechanisms, such as PTEN loss, clinically acquired resistance to PI3Kα inhibitors remains poorly understood. Through serial liquid biopsies and rapid autopsies in 39 patients with advanced breast cancer developing acquired resistance to PI3Kα inhibitors, we observe that 50% of patients acquire genomic alterations within the PI3K pathway, including PTEN loss and activating AKT1 mutations. Notably, although secondary PIK3CA mutations were previously reported to increase sensitivity to PI3Kα inhibitors, we identified emergent secondary resistance mutations in PIK3CA that alter the inhibitor binding pocket. Some mutations had differential effects on PI3Kα-selective versus pan-PI3K inhibitors, but resistance induced by all mutations could be overcome by the novel allosteric pan-mutant-selective PI3Kα-inhibitor RLY-2608. Together, these findings provide insights to guide strategies to overcome resistance in PIK3CA-mutated cancers. SIGNIFICANCE: In one of the largest patient cohorts analyzed to date, this study defines the clinical landscape of acquired resistance to PI3Kα inhibitors. Genomic alterations within the PI3K pathway represent a major mode of resistance and identify a novel class of secondary PIK3CA resistance mutations that can be overcome by an allosteric PI3Kα inhibitor. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 240 . This article is featured in Selected Articles from This Issue, p. 201.
Subject(s)
Breast Neoplasms , Phosphatidylinositol 3-Kinases , Humans , Female , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Fulvestrant , Phosphoinositide-3 Kinase Inhibitors , Class I Phosphatidylinositol 3-Kinases/genetics , MutationABSTRACT
While the development of multiple primary tumors in smokers with lung cancer can be attributed to carcinogen-induced field cancerization, the occurrence of multiple primary tumors in individuals with EGFR-mutant lung cancer who lack known environmental exposures remains unexplained. We identified ten patients with early-stage, resectable non-small cell lung cancer who presented with multiple anatomically distinct EGFR-mutant tumors. We analyzed the phylogenetic relationships among multiple tumors from each patient using whole exome sequencing (WES) and hypermutable poly-guanine (poly-G) repeat genotyping, as orthogonal methods for lineage tracing. In two patients, we identified germline EGFR variants, which confer moderately enhanced signaling when modeled in vitro. In four other patients, developmental mosaicism is supported by the poly-G lineage tracing and WES, indicating a common non-germline cell-of-origin. Thus, developmental mosaicism and germline variants define two distinct mechanisms of genetic predisposition to multiple EGFR-mutant primary tumors, with implications for understanding their etiology and clinical management.
ABSTRACT
Covalent inhibitors of Bruton tyrosine kinase (BTK) have transformed the therapy of chronic lymphocytic leukemia (CLL), but continuous therapy has been complicated by the development of resistance. The most common resistance mechanism in patients whose disease progresses on covalent BTK inhibitors (BTKis) is a mutation in the BTK 481 cysteine residue to which the inhibitors bind covalently. Pirtobrutinib is a highly selective, noncovalent BTKi with substantial clinical activity in patients whose disease has progressed on covalent BTKi, regardless of BTK mutation status. Using in vitro ibrutinib-resistant models and cells from patients with CLL, we show that pirtobrutinib potently inhibits BTK-mediated functions including B-cell receptor (BCR) signaling, cell viability, and CCL3/CCL4 chemokine production in both BTK wild-type and C481S mutant CLL cells. We demonstrate that primary CLL cells from responding patients on the pirtobrutinib trial show reduced BCR signaling, cell survival, and CCL3/CCL4 chemokine secretion. At time of progression, these primary CLL cells show increasing resistance to pirtobrutinib in signaling inhibition, cell viability, and cytokine production. We employed longitudinal whole-exome sequencing on 2 patients whose disease progressed on pirtobrutinib and identified selection of alternative-site BTK mutations, providing clinical evidence that secondary BTK mutations lead to resistance to noncovalent BTKis.
Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Agammaglobulinaemia Tyrosine Kinase , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Chemokine CCL4/genetics , Chemokine CCL4/therapeutic use , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , MutationABSTRACT
Richter syndrome (RS) arising from chronic lymphocytic leukemia (CLL) exemplifies an aggressive malignancy that develops from an indolent neoplasm. To decipher the genetics underlying this transformation, we computationally deconvoluted admixtures of CLL and RS cells from 52 patients with RS, evaluating paired CLL-RS whole-exome sequencing data. We discovered RS-specific somatic driver mutations (including IRF2BP2, SRSF1, B2M, DNMT3A and CCND3), recurrent copy-number alterations beyond del(9p21)(CDKN2A/B), whole-genome duplication and chromothripsis, which were confirmed in 45 independent RS cases and in an external set of RS whole genomes. Through unsupervised clustering, clonally related RS was largely distinct from diffuse large B cell lymphoma. We distinguished pathways that were dysregulated in RS versus CLL, and detected clonal evolution of transformation at single-cell resolution, identifying intermediate cell states. Our study defines distinct molecular subtypes of RS and highlights cell-free DNA analysis as a potential tool for early diagnosis and monitoring.
Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Serine-Arginine Splicing FactorsABSTRACT
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of hematologic malignancies. Approximately half of patients with refractory large B cell lymphomas achieve durable responses from CD19-targeting CAR-T treatment; however, failure mechanisms are identified in only a fraction of cases. To gain new insights into the basis of clinical response, we performed single-cell transcriptome sequencing of 105 pretreatment and post-treatment peripheral blood mononuclear cell samples, and infusion products collected from 32 individuals with large B cell lymphoma treated with either of two CD19 CAR-T products: axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel). Expansion of proliferative memory-like CD8 clones was a hallmark of tisa-cel response, whereas axi-cel responders displayed more heterogeneous populations. Elevations in CAR-T regulatory cells among nonresponders to axi-cel were detected, and these populations were capable of suppressing conventional CAR-T cell expansion and driving late relapses in an in vivo model. Our analyses reveal the temporal dynamics of effective responses to CAR-T therapy, the distinct molecular phenotypes of CAR-T cells with differing designs, and the capacity for even small increases in CAR-T regulatory cells to drive relapse.
Subject(s)
Biological Products , Lymphoma, Large B-Cell, Diffuse , Receptors, Chimeric Antigen , Antigens, CD19 , Humans , Immunotherapy, Adoptive/adverse effects , Leukocytes, Mononuclear , Lymphoma, Large B-Cell, Diffuse/pathology , Neoplasm Recurrence, Local/drug therapy , Receptors, Chimeric Antigen/geneticsABSTRACT
Anticancer therapies have been limited by the emergence of mutations and other adaptations. In bacteria, antibiotics activate the SOS response, which mobilizes error-prone factors that allow for continuous replication at the cost of mutagenesis. We investigated whether the treatment of lung cancer with EGFR inhibitors (EGFRi) similarly engages hypermutators. In cycling drug-tolerant persister (DTP) cells and in EGFRi-treated patients presenting residual disease, we observed upregulation of GAS6, whereas ablation of GAS6's receptor, AXL, eradicated resistance. Reciprocally, AXL overexpression enhanced DTP survival and accelerated the emergence of T790M, an EGFR mutation typical to resistant cells. Mechanistically, AXL induces low-fidelity DNA polymerases and activates their organizer, RAD18, by promoting neddylation. Metabolomics uncovered another hypermutator, AXL-driven activation of MYC, and increased purine synthesis that is unbalanced by pyrimidines. Aligning anti-AXL combination treatments with the transition from DTPs to resistant cells cured patient-derived xenografts. Hence, similar to bacteria, tumors tolerate therapy by engaging pharmacologically targetable endogenous mutators. SIGNIFICANCE: EGFR-mutant lung cancers treated with kinase inhibitors often evolve resistance due to secondary mutations. We report that in similarity to the bacterial SOS response stimulated by antibiotics, endogenous mutators are activated in drug-treated cells, and this heralds tolerance. Blocking the process prevented resistance in xenograft models, which offers new treatment strategies. This article is highlighted in the In This Issue feature, p. 2483.
Subject(s)
Drug Resistance, Neoplasm , Lung Neoplasms , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Humans , Cell Line, Tumor , DNA Replication , DNA-Binding Proteins/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Axl Receptor Tyrosine KinaseABSTRACT
BRAF-activating mutations are the most frequent driver mutations in papillary thyroid cancer (PTC). Targeted inhibitors such as dabrafenib have been used in advanced BRAF-mutated PTC; however, acquired resistance to the drug is common and little is known about other effectors that may play integral roles in this resistance. In addition, the induction of PTC dedifferentiation into highly aggressive KRAS-driven anaplastic thyroid cancer (ATC) has been reported. We detected a novel RAC1 (P34R) mutation acquired during dabrafenib treatment in a progressive metastatic lesion with ATC phenotype. To identify a potential functional link between this novel mutation and tumor dedifferentiation, we developed a cell line derived from the metastatic lesion and compared its behavior to isogenic cell lines and primary tumor samples. Our data demonstrated that RAC1 mutations induce changes in cell morphology, reorganization of F-actin almost exclusively at the cell cortex, and changes in cell adhesion properties. We also established that RAC1 amplification, with or without mutation, is sufficient to drive cell proliferation and resistance to BRAF inhibition. Further, we identified polyploidy of chromosome 7, which harbors RAC1, in both the metastatic lesion and its derived cell line. Copy number amplification and overexpression of other genes located on this chromosome, such as TWIST1, EGFR, and MET were also detected, which might also lead to dabrafenib resistance. Our study suggests that polyploidy leading to increased expression of specific genes, particularly those located on chromosome 7, should be considered when analyzing aggressive thyroid tumor samples and in further treatments.
ABSTRACT
Sacituzumab govitecan (SG), the first antibody-drug conjugate (ADC) approved for triple-negative breast cancer, incorporates the anti-TROP2 antibody hRS7 conjugated to a topoisomerase-1 (TOP1) inhibitor payload. We sought to identify mechanisms of SG resistance through RNA and whole-exome sequencing of pretreatment and postprogression specimens. One patient exhibiting de novo progression lacked TROP2 expression, in contrast to robust TROP2 expression and focal genomic amplification of TACSTD2/TROP2 observed in a patient with a deep, prolonged response to SG. Analysis of acquired genomic resistance in this case revealed one phylogenetic branch harboring a canonical TOP1 E418K resistance mutation and subsequent frameshift TOP1 mutation, whereas a distinct branch exhibited a novel TACSTD2/TROP2 T256R missense mutation. Reconstitution experiments demonstrated that TROP2T256R confers SG resistance via defective plasma membrane localization and reduced cell-surface binding by hRS7. These findings highlight parallel genomic alterations in both antibody and payload targets associated with resistance to SG. SIGNIFICANCE: These findings underscore TROP2 as a response determinant and reveal acquired SG resistance mechanisms involving the direct antibody and drug payload targets in distinct metastatic subclones of an individual patient. This study highlights the specificity of SG and illustrates how such mechanisms will inform therapeutic strategies to overcome ADC resistance.This article is highlighted in the In This Issue feature, p. 2355.
Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Camptothecin/analogs & derivatives , Immunoconjugates/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Antigens, Neoplasm/genetics , Camptothecin/therapeutic use , Cell Adhesion Molecules/genetics , Cell Line, Tumor , Female , Genomics , Humans , Triple Negative Breast Neoplasms/geneticsABSTRACT
Human diseases caused by mutations in extracellular matrix genes are often associated with an increased risk of cataract and lens capsular rupture. However, the underlying mechanisms of cataract pathogenesis in these conditions are still unknown. Using two different mouse models, we show that the accumulation of collagen chains in the secretory pathway activates the stress signaling pathway termed unfolded protein response (UPR). Transgenic mice expressing ectopic Col4a3 and Col4a4 genes in the lens exhibited activation of IRE1, ATF6, and PERK associated with expansion of the endoplasmic reticulum and attenuation of general protein translation. The expression of the transgenes had adverse effects on lens fiber cell differentiation and eventually induced cell death in a group of transgenic fiber cells. In Col4a1(+/Deltaex40) mutant mice, the accumulation of mutant chains also caused low levels of UPR activation. However, cell death was not induced in mutant lenses, suggesting that low levels of UPR activation are not proapoptotic. Collectively, the results provide in vivo evidence for a role of UPR in cataract formation in response to accumulation of terminally unfolded proteins in the endoplasmic reticulum.
Subject(s)
Autoantigens/biosynthesis , Cataract/metabolism , Collagen Type IV/biosynthesis , Endoplasmic Reticulum/metabolism , Lens, Crystalline/metabolism , Signal Transduction , Unfolded Protein Response , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Animals , Autoantigens/genetics , Cataract/genetics , Cataract/pathology , Cell Death/genetics , Collagen Type IV/genetics , Disease Models, Animal , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/pathology , Humans , Lens, Crystalline/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Mutant Strains , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Transgenes/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolismABSTRACT
The lens capsule is a modified basement membrane that completely surrounds the ocular lens. It is known that this extracellular matrix is important for both the structure and biomechanics of the lens in addition to providing informational cues to maintain lens cell phenotype. This review covers the development and structure of the lens capsule, lens diseases associated with mutations in extracellular matrix genes and the role of the capsule in lens function including those proposed for visual accommodation, selective permeability to infectious agents, and cell signaling.
Subject(s)
Lens Capsule, Crystalline/physiology , Accommodation, Ocular , Animals , Basement Membrane/metabolism , Biomechanical Phenomena , Cell Membrane Permeability , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Eye Diseases/metabolism , Eye Diseases/physiopathology , Female , Humans , Lens Capsule, Crystalline/embryology , Lens Capsule, Crystalline/metabolism , Organogenesis/physiology , Pregnancy , Signal Transduction/physiologyABSTRACT
During cancer therapy, tumor heterogeneity can drive the evolution of multiple tumor subclones harboring unique resistance mechanisms in an individual patient1-3. Previous case reports and small case series have suggested that liquid biopsy (specifically, cell-free DNA (cfDNA)) may better capture the heterogeneity of acquired resistance4-8. However, the effectiveness of cfDNA versus standard single-lesion tumor biopsies has not been directly compared in larger-scale prospective cohorts of patients following progression on targeted therapy. Here, in a prospective cohort of 42 patients with molecularly defined gastrointestinal cancers and acquired resistance to targeted therapy, direct comparison of postprogression cfDNA versus tumor biopsy revealed that cfDNA more frequently identified clinically relevant resistance alterations and multiple resistance mechanisms, detecting resistance alterations not found in the matched tumor biopsy in 78% of cases. Whole-exome sequencing of serial cfDNA, tumor biopsies and rapid autopsy specimens elucidated substantial geographic and evolutionary differences across lesions. Our data suggest that acquired resistance is frequently characterized by profound tumor heterogeneity, and that the emergence of multiple resistance alterations in an individual patient may represent the 'rule' rather than the 'exception'. These findings have profound therapeutic implications and highlight the potential advantages of cfDNA over tissue biopsy in the setting of acquired resistance.
Subject(s)
Cell-Free Nucleic Acids/blood , DNA, Neoplasm/blood , Gastrointestinal Neoplasms/blood , Liquid Biopsy , Autopsy , Cell-Free Nucleic Acids/genetics , Cohort Studies , DNA, Neoplasm/genetics , Drug Resistance, Neoplasm/genetics , Female , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Genetic Heterogeneity , Humans , Male , Middle Aged , Mutation , Proto-Oncogene Proteins B-raf/genetics , Exome SequencingABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
Advanced stages of papillary and anaplastic thyroid cancer continue to be plagued by a dismal prognosis, which is a result of limited effective therapies for these cancers. Due to the high proportion of thyroid cancers harboring mutations in the MAPK pathway, the MAPK pathway has become a focal point for therapeutic intervention in thyroid cancer. Unfortunately, unlike melanoma, a similar responsiveness to MAPK pathway inhibition has yet to be observed in thyroid cancer patients. To address this issue, we have focused on targeting the non-receptor tyrosine kinase, Src, and we and others have demonstrated that targeting Src results in inhibition of growth, invasion, and migration both in vitro and in vivo, which can be enhanced through the combined inhibition of Src and the MAPK pathway. Therefore, we examined the efficacy of the combination therapy across a panel of thyroid cancer cell lines representing common oncogenic drivers (BRAF, RAS, and PIK3CA). Interestingly, combined inhibition of Src and the MAPK pathway overcomes intrinsic dasatinib resistance in cell lines where both the MAPK and PI3K pathways are inhibited, which we show is likely due to the regulation of the PI3K pathway by Src in these responsive cells. Interestingly, we have mapped downstream phosphorylation of rpS6 as a key biomarker of response, and cells that maintain rpS6 phosphorylation likely represent drug tolerant persisters. Altogether, the combined inhibition of Src and the MAPK pathway holds great promise for improving the overall survival of advanced thyroid cancer patients with BRAF and RAS mutations, and activation of the PI3K pathway and rpS6 phosphorylation represent important biomarkers of response for patients treated with this therapy.
ABSTRACT
The ETS family of transcription factors is involved in several normal remodeling events and pathological processes including tumor progression. ETS transcription factors are divided into subfamilies based on the sequence and location of the ETS domain. ETV5 (Ets variant gene 5; also known as ERM) is a member of the PEA3 subfamily. Our meta-analysis of normal, benign, and malignant thyroid samples demonstrated that ETV5 expression is upregulated in papillary thyroid cancer and was predominantly associated with BRAF V600E or RAS mutations. However, the precise role of ETV5 in these lesions is unknown. In this study, we used the KTC1 cell line as a model for human advanced papillary thyroid cancer (PTC) because the cells harbor the heterozygous BRAF (V600E) mutation together with the C250T TERT promoter mutation. The role of ETV5 in PTC proliferation was tested using RNAi followed by high-throughput screening. Signaling pathways driving ETV5 expression were identified using specific pharmacological inhibitors. To determine if ETV5 influences the expression of epithelial-to-mesenchymal (EMT) markers in these cells, an EMT PCR array was used, and data were confirmed by qPCR and ChIP-qPCR. We found that ETV5 is critical for PTC cell growth, is expressed downstream of the MAPK pathway, and directly upregulates the transcription factor TWIST1, a known marker of intravasation and metastasis. Increased ETV5 expression could therefore be considered as a marker for advanced PTCs and a possible future therapeutic target.
Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Mutation , Nuclear Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Transcription Factors/metabolism , Twist-Related Protein 1/genetics , Biomarkers , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Epithelial-Mesenchymal Transition , Humans , Immunohistochemistry , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Thyroid Cancer, Papillary/pathologyABSTRACT
Ponatinib is a multi-targeted third generation tyrosine kinase inhibitor (TKI) used in the treatment of chronic myeloid leukemia (CML) patients harboring the Abelson (Abl)-breakpoint cluster region (Bcr) T315I mutation. In spite of having superb clinical efficacy, ponatinib triggers severe vascular adverse events (VAEs) that significantly limit its therapeutic potential. On vascular endothelial cells (ECs), ponatinib promotes EC dysfunction and apoptosis, and inhibits angiogenesis. Furthermore, ponatinib-mediated anti-angiogenic effect has been suggested to play a partial role in systemic and pulmonary hypertension via inhibition of vascular endothelial growth factor receptor 2 (VEGFR2). Even though ponatinib-associated VAEs are well documented, their etiology remains largely unknown, making it difficult to efficiently counteract treatment-related adversities. Therefore, a better understanding of the mechanisms by which ponatinib mediates VAEs is critical. In cultured human aortic ECs (HAECs) treated with ponatinib, we found an increase in nuclear factor NF-kB/p65 phosphorylation and NF-kB activity, inflammatory gene expression, cell permeability, and cell apoptosis. Mechanistically, ponatinib abolished extracellular signal-regulated kinase 5 (ERK5) transcriptional activity even under activation by its upstream kinase mitogen-activated protein kinase kinase 5α (CA-MEK5α). Ponatinib also diminished expression of ERK5 responsive genes such as Krüppel-like Factor 2/4 (klf2/4) and eNOS. Because ERK5 SUMOylation counteracts its transcriptional activity, we examined the effect of ponatinib on ERK5 SUMOylation, and found that ERK5 SUMOylation is increased by ponatinib. We also found that ponatibib-mediated increased inflammatory gene expression and decreased anti-inflammatory gene expression were reversed when ERK5 SUMOylation was inhibited endogenously or exogenously. Overall, we propose a novel mechanism by which ponatinib up-regulates endothelial ERK5 SUMOylation and shifts ECs to an inflammatory phenotype, disrupting vascular homeostasis.
ABSTRACT
The BRAF V600E mutation is commonly observed in papillary thyroid cancer (PTC) and predominantly activates the MAPK pathway. Presence of BRAF V600E predicts increasing risk of recurrence and higher mortality rate, and treatment options for such patients are limited. Vemurafenib, a BRAF V600E inhibitor, is initially effective, but cells inevitably develop alternative mechanisms of pathway activation. Mechanisms of primary resistance have been described in short-term cultures of PTC cells; however, mechanisms of acquired resistance have not. In the present study, we investigated possible adaptive mechanisms of BRAF V600E inhibitor resistance in KTC1 thyroid cancer cells following long-term vemurafenib exposure. We found that a subpopulation of KTC1 cells acquired resistance to vemurafenib following 5 months of treatment with the inhibitor. Resistance coincided with the spontaneous acquisition of a KRAS G12D activating mutation. Increases in activated AKT, ERK1/2, and EGFR were observed in these cells. In addition, the resistant cells were less sensitive to combinations of vemurafenib and MEK1 inhibitor or AKT inhibitor. These results support the KRAS G12D mutation as a genetic mechanism of spontaneously acquired secondary BRAF inhibitor resistance in BRAF V600E thyroid cancer cells.
Subject(s)
Carcinoma, Papillary/drug therapy , Carcinoma, Papillary/genetics , Drug Resistance, Neoplasm/genetics , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , MAP Kinase Signaling System , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Sulfonamides/pharmacology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzimidazoles/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/therapeutic use , ErbB Receptors/metabolism , Female , Gain of Function Mutation , Gene Knockdown Techniques , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Indoles/therapeutic use , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/metabolism , Male , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyridones/pharmacology , Pyrimidines/pharmacology , RNA Interference , RNA, Small Interfering , Sulfonamides/therapeutic use , Thyroid Cancer, Papillary , VemurafenibABSTRACT
MUC1 is a large, heavily glycosylated transmembrane glycoprotein that is proposed to create a protective microenvironment in many adenocarcinomas. Here we compare MUC1 and the well studied cell surface receptor target, EGFR, as gold nanoparticle (AuNP) targets and their subsequent vapor nanobubble generation efficacy in the human epithelial cell line, HES. Although EGFR and MUC1 were both highly expressed in these cells, TEM and confocal images revealed MUC1 as a superior target for nanoparticle intracellular accumulation and clustering. The MUC1-targeted AuNP intracellular clusters also generated significantly larger vapor nanobubbles. Our results demonstrate the promising opportunities MUC1 offers to improve the efficacy of targeted nanoparticle based approaches.
ABSTRACT
The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level.