Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Int J Mol Sci ; 25(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39201388

ABSTRACT

HIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of Human Immunodeficiency Virus (HIV) infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption (IEBD). Longitudinal blood samples obtained from rhesus macaques with chronic SIV infection and long-term suppressive ART were evaluated for IEBD biomarkers, inflammasome activation (IL-1ß and IL-18), inflammatory cytokines, and triglyceride (TG) levels. Activated monocyte subpopulations and glycolytic potential were investigated in peripheral blood mononuclear cells (PBMCs). During the chronic phase of treated SIV infection, elevated levels of plasma IL-1ß and IL-18 were observed following the hallmark increase in IEBD biomarkers, intestinal fatty acid-binding protein (IFABP) and LPS-binding protein (LBP). Further, significant correlations of plasma IFABP levels with IL-1ß and IL-18 were observed between 10 and 12 months of ART. Higher levels of sCD14, IL-6, and GM-CSF, among other inflammatory mediators, were also observed only during the long-term SIV + ART phase along with a trend of increase in the frequencies of activated CD14+CD16+ intermediate monocyte subpopulations. Lastly, we found elevated levels of blood TG and higher glycolytic capacity in PBMCs of chronic SIV-infected macaques with long-term ART. The increase in circulating IL-18 and IL-1ß following IEBD and their significant positive correlation with IFABP suggest a connection between gut barrier disruption and inflammasome activation during chronic SIV infection, despite viral suppression with ART. Additionally, the increase in markers of monocyte activation, along with elevated TG and enhanced glycolytic pathway activity, indicates metabolic remodeling that could fuel metabolic syndrome. Further research is needed to understand the mechanisms by which gut dysfunction and inflammasome activation contribute to HIV-associated metabolic complications, enabling targeted interventions in people with HIV.


Subject(s)
Interleukin-18 , Interleukin-1beta , Intestinal Mucosa , Macaca mulatta , Monocytes , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/drug therapy , Interleukin-18/blood , Interleukin-18/metabolism , Monocytes/metabolism , Monocytes/immunology , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Intestinal Mucosa/metabolism , Anti-Retroviral Agents/therapeutic use , Inflammasomes/metabolism , Biomarkers/blood , Male , Leukocytes, Mononuclear/metabolism , Chronic Disease
2.
Am J Pathol ; 191(2): 274-282, 2021 02.
Article in English | MEDLINE | ID: mdl-33171111

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a wide range of disease severity, ranging from asymptomatic infection to a life-threating illness, particularly in the elderly population and individuals with comorbid conditions. Among individuals with serious coronavirus 2019 (COVID-19) disease, acute respiratory distress syndrome (ARDS) is a common and often fatal presentation. Animal models of SARS-CoV-2 infection that manifest severe disease are needed to investigate the pathogenesis of COVID-19-induced ARDS and evaluate therapeutic strategies. We report two cases of ARDS in two aged African green monkeys (AGMs) infected with SARS-CoV-2 that had pathological lesions and disease similar to severe COVID-19 in humans. We also report a comparatively mild COVID-19 phenotype characterized by minor clinical, radiographic, and histopathologic changes in the two surviving, aged AGMs and four rhesus macaques (RMs) infected with SARS-CoV-2. Notable increases in circulating cytokines were observed in three of four infected, aged AGMs but not in infected RMs. All the AGMs had increased levels of plasma IL-6 compared with baseline, a predictive marker and presumptive therapeutic target in humans infected with SARS-CoV-2. Together, our results indicate that both RMs and AGMs are capable of modeling SARS-CoV-2 infection and suggest that aged AGMs may be useful for modeling severe disease manifestations, including ARDS.


Subject(s)
COVID-19/etiology , Lung/virology , SARS-CoV-2/pathogenicity , Aging , Animals , Chlorocebus aethiops/virology , Coronavirus Infections/drug therapy , Cytokines/metabolism , Humans , Lung/pathology , Macaca mulatta/virology , Viral Load/methods
3.
Am J Respir Cell Mol Biol ; 64(1): 79-88, 2021 01.
Article in English | MEDLINE | ID: mdl-32991819

ABSTRACT

Preclinical mouse models that recapitulate some characteristics of coronavirus disease (COVID-19) will facilitate focused study of pathogenesis and virus-host responses. Human agniotensin-converting enzyme 2 (hACE2) serves as an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect people via binding to envelope spike proteins. Herein we report development and characterization of a rapidly deployable COVID-19 mouse model. C57BL/6J (B6) mice expressing hACE2 in the lung were transduced by oropharyngeal delivery of the recombinant human adenovirus type 5 that expresses hACE2 (Ad5-hACE2). Mice were infected with SARS-CoV-2 at Day 4 after transduction and developed interstitial pneumonia associated with perivascular inflammation, accompanied by significantly higher viral load in lungs at Days 3, 6, and 12 after infection compared with Ad5-empty control group. SARS-CoV-2 was detected in pneumocytes in alveolar septa. Transcriptomic analysis of lungs demonstrated that the infected Ad5-hACE mice had a significant increase in IFN-dependent chemokines Cxcl9 and Cxcl10, and genes associated with effector T-cell populations including Cd3 g, Cd8a, and Gzmb. Pathway analysis showed that several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the data set, including cytokine-cytokine receptor interaction, the chemokine signaling pathway, the NOD-like receptor signaling pathway, the measles pathway, and the IL-17 signaling pathway. This response is correlative to clinical response in lungs of patients with COVID-19. These results demonstrate that expression of hACE2 via adenovirus delivery system sensitized the mouse to SARS-CoV-2 infection and resulted in the development of a mild COVID-19 phenotype, highlighting the immune and inflammatory host responses to SARS-CoV-2 infection. This rapidly deployable COVID-19 mouse model is useful for preclinical and pathogenesis studies of COVID-19.


Subject(s)
Alveolar Epithelial Cells/immunology , COVID-19/immunology , Gene Expression , SARS-CoV-2/immunology , Signal Transduction/immunology , Adenoviridae/genetics , Adenoviridae/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/pathology , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Signal Transduction/genetics , Transduction, Genetic
4.
J Cell Physiol ; 232(3): 517-525, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27249540

ABSTRACT

Identification of cellular proteins, in addition to already known transcription factors such as NF-κB, Sp1, C-EBPß, NFAT, ATF/CREB, and LEF-1, which interact with the HIV-1 LTR, is critical in understanding the mechanism of HIV-1 replication in monocytes/macrophages. Our studies demonstrate upregulation of pyruvate kinase isoform M2 (PKM2) expression during HIV-1SF162 infection of monocyte/macrophages and reactivation of HIV-1 in U1 cells, a macrophage model of latency. We observed that HIV-1SF162 infection of monocyte/macrophages and reactivation of HIV-1 in U1 cells by PMA resulted in increased levels of nuclear PKM2 compared to PMA-induced U937 cells. Furthermore, there was a significant increase in the nuclear dimeric form of PKM2 in the PMA-induced U1 cells in comparison to PMA-induced U937 cells. We focused on understanding the potential role of PKM2 in HIV-1 LTR transactivation. Chromatin immunoprecipitation (ChIP) analysis in PMA-activated U1 and TZM-bl cells demonstrated the interaction of PKM2 with the HIV-1 LTR. Our studies show that overexpression of PKM2 results in transactivation of HIV-1 LTR-luciferase reporter in U937, U-87 MG, and TZM-bl cells. Using various truncated constructs of the HIV-1 LTR, we mapped the region spanning -120 bp to -80 bp to be essential for PKM2-mediated transactivation. This region contains the NF-κB binding site and deletion of this site attenuated PKM2-mediated activation of HIV-1 LTR. Immunoprecipitation experiments using U1 cell lysates demonstrated a physical interaction between PKM2 and the p65 subunit of NF-κB. These observations demonstrate for the first time that PKM2 is a transcriptional co-activator of HIV-1 LTR. J. Cell. Physiol. 232: 517-525, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Carrier Proteins/metabolism , HIV Long Terminal Repeat/genetics , HIV-1/genetics , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Binding Sites , Cell Nucleus/drug effects , Cell Nucleus/metabolism , HIV-1/drug effects , Humans , Macrophages/drug effects , Macrophages/metabolism , Models, Biological , Monocytes/drug effects , Monocytes/metabolism , Promoter Regions, Genetic , Protein Binding/drug effects , Protein Multimerization/drug effects , Protein Subunits/metabolism , Protein Transport/drug effects , Sequence Deletion , Tetradecanoylphorbol Acetate/pharmacology , Transcription Factor RelA/metabolism , U937 Cells , Virus Replication/drug effects , Thyroid Hormone-Binding Proteins
5.
Am J Pathol ; 186(5): 1361-74, 2016 05.
Article in English | MEDLINE | ID: mdl-26952642

ABSTRACT

Atherosclerosis regression is an important clinical goal, and treatments that can reverse atherosclerotic plaque formation are actively being sought. Our aim was to determine whether administration of exogenous IL-19, a Th2 cytokine, could attenuate progression of preformed atherosclerotic plaque and to identify molecular mechanisms. LDLR(-/-) mice were fed a Western diet for 12 weeks, then administered rIL-19 or phosphate-buffered saline concomitant with Western diet for an additional 8 weeks. Analysis of atherosclerosis burden showed that IL-19-treated mice were similar to baseline, in contrast to control mice which showed a 54% increase in plaque, suggesting that IL-19 halted the progression of atherosclerosis. Plaque characterization showed that IL-19-treated mice had key features of atherosclerosis regression, including a reduction in macrophage content and an enrichment in markers of M2 macrophages. Mechanistic studies revealed that IL-19 promotes the activation of key pathways leading to M2 macrophage polarization, including STAT3, STAT6, Kruppel-like factor 4, and peroxisome proliferator-activated receptor γ, and can reduce cytokine-induced inflammation in vivo. We identified a novel role for IL-19 in regulating macrophage lipid metabolism through peroxisome proliferator-activated receptor γ-dependent regulation of scavenger receptor-mediated cholesterol uptake and ABCA1-mediated cholesterol efflux. These data show that IL-19 can halt progression of preformed atherosclerotic plaques by regulating both macrophage inflammation and cholesterol homeostasis and implicate IL-19 as a link between inflammation and macrophage cholesterol metabolism.


Subject(s)
Atherosclerosis/drug therapy , Cholesterol/metabolism , Interleukin-10/pharmacology , Macrophages/metabolism , Plaque, Atherosclerotic/drug therapy , ATP Binding Cassette Transporter 1/metabolism , Animals , Biomarkers/metabolism , Diet, Western , Disease Progression , Female , Inflammation , Interleukins , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Lipid Metabolism/physiology , Macrophages/drug effects , Male , Mice, Knockout , PPAR gamma/metabolism , STAT Transcription Factors/metabolism , Transfection
6.
J Cell Physiol ; 231(7): 1542-53, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26553431

ABSTRACT

Recently, multiple µ-opioid receptor (MOR) isoforms have been identified that originate from a single gene, OPRM1; however, both their regulation and their functional significance are poorly characterized. The objectives of this study were to decipher, first, the regulation of alternatively spliced µ-opioid receptor isoforms and the spliceosome components that determine splicing specificity and, second, the signaling pathways utilized by particular isoforms both constitutively and following agonist binding. Our studies demonstrated that the expression of a particular splice variant, MOR-1X, was up-regulated by morphine, and this coincided with an increase in the essential splicing factor ASF/SF2. Structural comparison of this isoform to the prototypical variant MOR-1 revealed that the unique distal portion of the C-terminal domain contains additional phosphorylation sites, whereas functional comparison found distinct signaling differences, particularly in the ERK and p90 RSK pathways. Additionally, MOR-1X expression significantly reduced Bax expression and mitochondrial dehydrogenase activity, suggesting a unique functional consequence for MOR-1X specific signaling. Collectively, these findings suggest that alternative splicing of the MOR is altered by exogenous opioids, such as morphine, and that individual isoforms, such as MOR-1X, mediate unique signal transduction with distinct functional consequence. Furthermore, we have identified for the first time a potential mechanism that involves the essential splicing factor ASF/SF2 through which morphine regulates splicing specificity of the MOR encoding gene, OPRM1.


Subject(s)
Receptors, Opioid, mu/genetics , Serine-Arginine Splicing Factors/genetics , Transcription, Genetic , Alternative Splicing/genetics , Gene Expression Regulation/drug effects , Humans , Morphine/administration & dosage , Protein Isoforms/genetics , Receptors, Opioid, mu/biosynthesis , Signal Transduction/drug effects
7.
bioRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38948748

ABSTRACT

HIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of HIV infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption and CVD pathogenesis. Longitudinal blood samples obtained from rhesus macaques with chronic SIV infection and long-term suppressive ART were evaluated for biomarkers of intestinal epithelial barrier disruption (IEBD), inflammasome activation (IL-1ß and IL-18), inflammatory cytokines, and triglyceride (TG) levels. Activated monocyte subpopulations and glycolytic potential were investigated in peripheral blood mononuclear cells (PBMCs). Higher plasma levels of IL-1ß and IL-18 were observed following the hallmark increase in IEBD biomarkers, intestinal fatty acid-binding protein (IFABP) and LPS-binding protein (LBP), during the chronic phase of treated SIV infection. Further, significant correlations of plasma IFABP levels with IL-1ß and IL-18 were observed between 10-12 months of ART. Higher levels of sCD14, IL-6, and GM-CSF, among other inflammatory mediators, were also observed only during the long-term SIV+ART phase along with a trend of increase in frequencies of activated CD14 + CD16 + intermediate monocyte subpopulations. Lastly, we found elevated levels of blood TG and higher glycolytic capacity in PBMCs of chronic SIV-infected macaques with long-term ART. The increase in circulating IL-18 and IL-1ß following IEBD and their significant positive correlation with IFABP suggest a connection between gut barrier disruption and inflammasome activation during chronic SIV infection, despite viral suppression with ART. Additionally, the increase in markers of monocyte activation, along with elevated TG and enhanced glycolytic pathway activity, indicates metabolic remodeling that could accelerate CVD pathogenesis. Further research is needed to understand mechanisms by which gut dysfunction and inflammasome activation contribute to HIV-associated CVD and metabolic complications, enabling targeted interventions in people with HIV.

8.
Nat Commun ; 15(1): 6664, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164284

ABSTRACT

Hyperglycemia, and exacerbation of pre-existing deficits in glucose metabolism, are manifestations of the post-acute sequelae of SARS-CoV-2. Our understanding of metabolic decline after acute COVID-19 remains unclear due to the lack of animal models. Here, we report a non-human primate model of metabolic post-acute sequelae of SARS-CoV-2 using SARS-CoV-2 infected African green monkeys. Using this model, we identify a dysregulated blood chemokine signature during acute COVID-19 that correlates with elevated and persistent hyperglycemia four months post-infection. Hyperglycemia also correlates with liver glycogen levels, but there is no evidence of substantial long-term SARS-CoV-2 replication in the liver and pancreas. Finally, we report a favorable glycemic effect of the SARS-CoV-2 mRNA vaccine, administered on day 4 post-infection. Together, these data suggest that the African green monkey model exhibits important similarities to humans and can be utilized to assess therapeutic candidates to combat COVID-related metabolic defects.


Subject(s)
COVID-19 , Disease Models, Animal , Hyperglycemia , Liver , SARS-CoV-2 , Animals , Hyperglycemia/immunology , COVID-19/immunology , COVID-19/virology , COVID-19/blood , Chlorocebus aethiops , SARS-CoV-2/immunology , Liver/virology , Liver/metabolism , Liver/immunology , Glycogen/metabolism , Blood Glucose/metabolism , Humans , Male , Pancreas/virology , Pancreas/immunology , Pancreas/pathology , Pancreas/metabolism , Chemokines/metabolism , Chemokines/blood , Female , Virus Replication
9.
bioRxiv ; 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37693534

ABSTRACT

Adverse neurological and psychiatric outcomes, collectively termed the post-acute sequelae of SARS-CoV-2 infection (PASC), persist in adults clinically recovered from COVID-19. Effective therapeutic interventions are fundamental to reducing the burden of PASC, necessitating an investigation of the pathophysiology underlying the debilitating neurological symptoms associated with the condition. Herein, eight non-human primates (Wild-Caught African Green Monkeys, n =4; Indian Rhesus Macaques, n =4) were inoculated with the SARS-CoV-2 isolate USA-WA1/2020 by either small particle aerosol or via multiple routes. At necropsy, tissue from the olfactory epithelium and pyriform cortex/amygdala of SARS-CoV-2 infected non-human primates were collected for ribonucleic acid in situ hybridization (i.e., RNAscope). First, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) mRNA are downregulated in the pyriform cortex/amygdala of non-human primates clinically recovered from SARS-CoV-2 inoculation relative to wildtype controls. Second, abundant SARS-CoV-2 mRNA was detected in clinically recovered non-human primates; mRNA which is predominantly harbored in pericytes. Collectively, examination of post-mortem pyriform cortex/amygdala brain tissue of non-human primates clinically recovered from SARS-CoV-2 infection revealed two early pathophysiological mechanisms potentially underlying PASC. Indeed, therapeutic interventions targeting the downregulation of ACE2, decreased expression of TMPRSS2, and/or persistent infection of pericytes in the central nervous system may effectively mitigate the debilitating symptoms of PASC.

10.
Nat Commun ; 14(1): 4414, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479685

ABSTRACT

Elevation in soluble urokinase receptor (suPAR) and proteinuria are common signs in patients with moderate to severe coronavirus disease 2019 (COVID-19). Here we characterize a new type of proteinuria originating as part of a viral response. Inoculation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes increased suPAR levels and glomerulopathy in African green monkeys. Using an engineered mouse model with high suPAR expression, inhaled variants of SARS-CoV-2 spike S1 protein elicite proteinuria that could be blocked by either suPAR antibody or SARS-CoV-2 vaccination. In a cohort of 1991 COVID-19 patients, suPAR levels exhibit a stepwise association with proteinuria in non-Omicron, but not in Omicron infections, supporting our findings of biophysical and functional differences between variants of SARS-CoV-2 spike S1 protein and their binding to podocyte integrins. These insights are not limited to SARS-CoV-2 and define viral response proteinuria (VRP) as an innate immune mechanism and co-activation of podocyte integrins.


Subject(s)
COVID-19 , Podocytes , Animals , Mice , Chlorocebus aethiops , Humans , COVID-19 Vaccines , Receptors, Urokinase Plasminogen Activator/genetics , SARS-CoV-2 , Integrins , Proteinuria
11.
J Cell Physiol ; 227(7): 2832-41, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22034138

ABSTRACT

The abuse of intravenous drugs, such as heroin, has become a major public health concern due to the increased risk of HIV-1 infection. Opioids such as heroin were originally identified and subsequently abused for their analgesic effects. However, many investigations have found additional effects of opioids, including regulation of the immune system. As such, chronic opioid abuse has been shown to promote HIV-1 pathogenesis and facilitate HIV-1-associated neurocognitive dysfunction. Clinical opioids, such as morphine and methadone, as well as illicit opioids, such as heroin, exert their effects primarily through interactions with the µ-opioid receptor (MOR). However, the mechanisms by which opioids enhance neurocognitive dysfunction through MOR-mediated signaling pathways are not completely understood. New findings in the regulation of MOR expression, particularly epigenetic and transcriptional regulation as well as alternative splicing, sheds new insights into possible mechanisms of HIV-1 and opiate synergy. In this review, we identify mechanisms regulating MOR expression and propose novel mechanisms by which opioids and HIV-1 may modulate this regulation. Additionally, we suggest that differential regulation of newly identified MOR isoforms by opioids and HIV-1 has functional consequence in enhancing HIV-1 neurocognitive dysfunction.


Subject(s)
Central Nervous System/metabolism , Central Nervous System/virology , HIV Infections/genetics , HIV Infections/metabolism , HIV-1 , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Animals , Epigenomics/methods , Humans
12.
Front Cell Dev Biol ; 10: 849298, 2022.
Article in English | MEDLINE | ID: mdl-35465335

ABSTRACT

Recent studies on the epitranscriptomic code of SARS-CoV-2 infection have discovered various RNA modifications, such as N6-methyladenosine (m6A), pseudouridine (Ψ), and 2'-O-methylation (Nm). The effects of RNA methylation on SARS-CoV-2 replication and the enzymes involved in this mechanism are emerging. In this review, we summarize the advances in this emerging field and discuss the role of various players such as readers, writers, and erasers in m6A RNA methylation, the role of pseudouridine synthase one and seven in epitranscriptomic modification Ψ, an isomer of uridine, and role of nsp16/nsp10 heterodimer in 2'-O-methylation of the ribose sugar of the first nucleotide of SARS-CoV-2 mRNA. We also discuss RNA expression levels of various enzymes involved in RNA modifications in blood cells of SARS-CoV-2 infected individuals and their impact on host mRNA modification. In conclusion, these observations will facilitate the development of novel strategies and therapeutics for targeting RNA modification of SARS-CoV-2 RNA to control SARS-CoV-2 infection.

13.
J Cell Biochem ; 112(4): 1168-75, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21308746

ABSTRACT

Complement component C3, the central player in the complement cascade and the pro-inflammatory cytokine IL-1ß is expressed by activated glial cells and may contribute to neurodegeneration. This study examines the regulation of the expression of C3 by IL-1ß in astroglial cells focusing on the role of the upstream kinase MKK6, p38-α MAPK, and C/EBP-ß isoforms (LAP1, LAP2, or LIP) in astroglial cells. Activation of human astroglial cell line, U373 with IL-1ß, led to the induction of C3 mRNA and protein expression as determined by real-time RT-PCR and Western blot analysis, respectively. This induction was suppressed by the pharmacological inhibitor of p38 MAPK (i.e., SB202190-HCl), suggesting the involvement of p38 MAPK in C3 gene expression. IL-1ß also induced C3 promoter activity in U373 cells in a MAP kinase- and C/EBP-ß-dependent manner. Cotransfection of C3 luciferase reporter construct with constitutively active form of the upstream kinase in the MAP kinase cascade, that is, MKK6 (the immediate upstream activator of p38 kinase) resulted in marked stimulation of the promoter activity, whereas overexpression of a dominant negative forms of MKK6 and p38α MAPK inhibited C3 promoter activity. Furthermore, a mutant form of C/EBP-ß, LAP(T235A) showed reduction in IL-1ß-mediated C3 promoter activation. These results suggest that the p38α, MAPK, and MKK6 play prominent roles in IL-1ß and C/EBP-ß-mediated C3 gene expression in astrocytes.


Subject(s)
Astrocytes/drug effects , CCAAT-Enhancer-Binding Protein-beta/metabolism , Complement C3/metabolism , Interleukin-1beta/pharmacology , MAP Kinase Kinase 6/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Blotting, Western , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Line, Tumor , Complement C3/genetics , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Humans , Imidazoles/pharmacology , Luciferases/genetics , Luciferases/metabolism , MAP Kinase Kinase 6/genetics , Mutation , Phosphorylation/drug effects , Promoter Regions, Genetic/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pyridines/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics
14.
Methods Mol Biol ; 2311: 39-49, 2021.
Article in English | MEDLINE | ID: mdl-34033076

ABSTRACT

This chapter describes the culture and propagation of murine embryonic stem cells, F9 and P19, and strategies for differentiation of these stem cells into neurons. Additional techniques are described for obtaining enriched populations of mature neurons from P19 cells and differentiation of F9 cells into serotonergic or catecholaminergic neurons. The protocols described herein can be used for dissection of the pathways such as gliogenesis and neurogenesis that are involved in differentiation of pluripotent stem cells such as F9 and P19 into glial cells or terminally differentiated neurons.


Subject(s)
Mouse Embryonic Stem Cells/pathology , Neural Stem Cells/pathology , Neurogenesis , Neurons/pathology , Teratocarcinoma/pathology , Animals , Cell Culture Techniques , Cell Line, Tumor , Cell Proliferation , Mice , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Neurons/drug effects , Neurons/metabolism , Phenotype , Teratocarcinoma/metabolism , Tretinoin/pharmacology
15.
Front Cardiovasc Med ; 8: 634774, 2021.
Article in English | MEDLINE | ID: mdl-33898535

ABSTRACT

Antiretroviral therapy (ART) has significantly reduced the rate of mortality in HIV infected population, but people living with HIV (PLWH) show higher rates of cardiovascular disease (CVD). However, the effect of antiretroviral (ARV) drug treatment on cardiac cells is not clear. In this study, we explored the effect of ARV drugs in cardiomyocyte epigenetic remodeling. Primary cardiomyocytes were treated with a combination of four ARV drugs (ritonavir, abacavir, atazanavir, and lamivudine), and epigenetic changes were examined. Our data suggest that ARV drugs treatment significantly reduces acetylation at H3K9 and H3K27 and promotes methylation at H3K9 and H3K27, which are histone marks for gene expression activation and gene repression, respectively. Besides, ARV drugs treatment causes pathological changes in the cell through increased production of reactive oxygen species (ROS) and cellular hypertrophy. Further, the expression of chromatin remodeling enzymes was monitored in cardiomyocytes treated with ARV drugs using PCR array. The PCR array data indicated that the expression of epigenetic enzymes was differentially regulated in the ARV drugs treated cardiomyocytes. Consistent with the PCR array result, SIRT1, SUV39H1, and EZH2 protein expression was significantly upregulated in ARV drugs treated cardiomyocytes. Furthermore, gene expression analysis of the heart tissue from HIV+ patients showed that the expression of SIRT1, SUV39H1, and EZH2 was up-regulated in patients with a history of ART. Additionally, we found that expression of SIRT1 can protect cardiomyocytes in presence of ARV drugs through reduction of cellular ROS and cellular hypertrophy. Our results reveal that ARV drugs modulate the epigenetic histone markers involved in gene expression, and play a critical role in histone deacetylation at H3K9 and H3K27 during cellular stress. This study may lead to development of novel therapeutic strategies for the treatment of CVD in PLWH.

16.
Virology ; 540: 104-118, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31765920

ABSTRACT

JC virus (JCV) Agnoprotein (Agno) plays critical roles in successful completion of the viral replication cycle. Understanding its regulatory roles requires a complete map of JCV-host protein interactions. Here, we report the first Agno interactome with host cellular targets utilizing "Two-Strep-Tag" affinity purification system coupled with mass spectroscopy (AP/MS). Proteomics data revealed that Agno primarily targets 501 cellular proteins, most of which contain "coiled-coil" motifs. Agno-host interactions occur in several cellular networks including those involved in protein synthesis and degradation; and cellular transport; and in organelles, including mitochondria, nucleus and ER-Golgi network. Among the Agno interactions, Rab11B, Importin and Crm-1 were first validated biochemically and further characterization was done for Crm-1, using a HIV-1 Rev-M10-like Agno mutant (L33D + E34L), revealing the critical roles of L33 and E34 residues in Crm-1 interaction. This comprehensive proteomics data provides new foundations to unravel the critical regulatory roles of Agno during the JCV life cycle.


Subject(s)
Host-Pathogen Interactions , JC Virus/metabolism , Polyomavirus Infections/metabolism , Polyomavirus Infections/virology , Viral Regulatory and Accessory Proteins/metabolism , Amino Acid Sequence , Carrier Proteins/metabolism , Cell Line , Cell Nucleus/metabolism , Computational Biology/methods , Humans , Models, Molecular , Protein Binding , Protein Conformation , Proteome , Proteomics/methods , Recombinant Proteins , Structure-Activity Relationship , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/isolation & purification , Virus Replication
17.
Theranostics ; 10(16): 7448-7464, 2020.
Article in English | MEDLINE | ID: mdl-32642005

ABSTRACT

The COVID-19 pandemic is an emerging threat to global public health. While our current understanding of COVID-19 pathogenesis is limited, a better understanding will help us develop efficacious treatment and prevention strategies for COVID-19. One potential therapeutic target is angiotensin converting enzyme 2 (ACE2). ACE2 primarily catalyzes the conversion of angiotensin I (Ang I) to a nonapeptide angiotensin or the conversion of angiotensin II (Ang II) to angiotensin 1-7 (Ang 1-7) and has direct effects on cardiac function and multiple organs via counter-regulation of the renin-angiotensin system (RAS). Significant to COVID-19, ACE2 is postulated to serve as a major entry receptor for SARS-CoV-2 in human cells, as it does for SARS-CoV. Many infected individuals develop COVID-19 with fever, cough, and shortness of breath that can progress to pneumonia. Disease progression promotes the activation of immune cells, platelets, and coagulation pathways that can lead to multiple organ failure and death. ACE2 is expressed by epithelial cells of the lungs at high level, a major target of the disease, as seen in post-mortem lung tissue of patients who died with COVID-19, which reveals diffuse alveolar damage with cellular fibromyxoid exudates bilaterally. Comparatively, ACE2 is expressed at low level by vascular endothelial cells of the heart and kidney but may also be targeted by the virus in severe COVID-19 cases. Interestingly, SARS-CoV-2 infection downregulates ACE2 expression, which may also play a critical pathogenic role in COVID-19. Importantly, targeting ACE2/Ang 1-7 axis and blocking ACE2 interaction with the S protein of SARS-CoV-2 to curtail SARS-CoV-2 infection are becoming very attractive therapeutics potential for treatment and prevention of COVID-19. Here, we will discuss the following subtopics: 1) ACE2 as a receptor of SARS-CoV-2; 2) clinical and pathological features of COVID-19; 3) role of ACE2 in the infection and pathogenesis of SARS; 4) potential pathogenic role of ACE2 in COVID-19; 5) animal models for pathological studies and therapeutics; and 6) therapeutics development for COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Receptors, Virus/metabolism , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/chemistry , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Disease Models, Animal , Host Microbial Interactions/physiology , Humans , Mice , Models, Biological , Pandemics , Pneumonia, Viral/therapy , Renin-Angiotensin System/physiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Theranostic Nanomedicine , Viral Vaccines/isolation & purification , Virus Internalization
18.
Nat Commun ; 11(1): 2280, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385245

ABSTRACT

Renal macrophages (RMs) participate in tissue homeostasis, inflammation and repair. RMs consist of embryo-derived (EMRMs) and bone marrow-derived RMs (BMRMs), but the fate, dynamics, replenishment, functions and metabolic states of these two RM populations remain unclear. Here we investigate and characterize RMs at different ages by conditionally labeling and ablating RMs populations in several transgenic lines. We find that RMs expand and mature in parallel with renal growth after birth, and are mainly derived from fetal liver monocytes before birth, but self-maintain through adulthood with contribution from peripheral monocytes. Moreover, after the RMs niche is emptied, peripheral monocytes rapidly differentiate into BMRMs, with the CX3CR1/CX3CL1 signaling axis being essential for the maintenance and regeneration of both EMRMs and BMRMs. Lastly, we show that EMRMs have a higher capacity for scavenging immune complex, and are more sensitive to immune challenge than BMRMs, with this difference associated with their distinct glycolytic capacities.


Subject(s)
Bone Marrow Cells/cytology , Cell Lineage , Kidney/embryology , Macrophages/cytology , Animals , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/blood , Chemokine CX3CL1/metabolism , Female , Fetus/cytology , Liver/embryology , Male , Mice , Monocytes/cytology
19.
Front Pharmacol ; 10: 1510, 2019.
Article in English | MEDLINE | ID: mdl-31920679

ABSTRACT

Excitatory amino acid transporter 2 (EAAT2) is the predominant astrocyte glutamate transporter involved in the reuptake of the majority of the synaptic glutamate in the mammalian central nervous system (CNS). Gene expression can be altered without changing DNA sequences through epigenetic mechanisms. Mechanisms of epigenetic regulation, include DNA methylation, post-translational modifications of histones, chromatin remodeling, and small non-coding RNAs. This review is focused on neurological disorders, such as glioblastoma multiforme (GBM), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), bipolar disorder (BD), and neuroHIV where there is evidence that epigenetics plays a role in the reduction of EAAT2 expression. The emerging field of pharmaco-epigenetics provides a novel avenue for epigenetics-based drug therapy. This review highlights findings on the role of epigenetics in the regulation of EAAT2 in different neurological disorders and discusses the current pharmacological approaches used and the potential use of novel therapeutic approaches to induce EAAT2 expression in neurological disorders using CRISPR/Cas9 technology.

SELECTION OF CITATIONS
SEARCH DETAIL