Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 55(12): 2436-2453.e5, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36462503

ABSTRACT

The factors that influence survival during severe infection are unclear. Extracellular chromatin drives pathology, but the mechanisms enabling its accumulation remain elusive. Here, we show that in murine sepsis models, splenocyte death interferes with chromatin clearance through the release of the DNase I inhibitor actin. Actin-mediated inhibition was compensated by upregulation of DNase I or the actin scavenger gelsolin. Splenocyte death and neutrophil extracellular trap (NET) clearance deficiencies were prevalent in individuals with severe COVID-19 pneumonia or microbial sepsis. Activity tracing by plasma proteomic profiling uncovered an association between low NET clearance and increased COVID-19 pathology and mortality. Low NET clearance activity with comparable proteome associations was prevalent in healthy donors with low-grade inflammation, implicating defective chromatin clearance in the development of cardiovascular disease and linking COVID-19 susceptibility to pre-existing conditions. Hence, the combination of aberrant chromatin release with defects in protective clearance mechanisms lead to poor survival outcomes.


Subject(s)
COVID-19 , Sepsis , Animals , Mice , Actins , Chromatin , Deoxyribonuclease I , DNA , Neutrophils , Proteomics
2.
Immunity ; 54(2): 340-354.e6, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33567252

ABSTRACT

Cellular and humoral immunity to SARS-CoV-2 is critical to control primary infection and correlates with severity of disease. The role of SARS-CoV-2-specific T cell immunity, its relationship to antibodies, and pre-existing immunity against endemic coronaviruses (huCoV), which has been hypothesized to be protective, were investigated in 82 healthy donors (HDs), 204 recovered (RCs), and 92 active COVID-19 patients (ACs). ACs had high amounts of anti-SARS-CoV-2 nucleocapsid and spike IgG but lymphopenia and overall reduced antiviral T cell responses due to the inflammatory milieu, expression of inhibitory molecules (PD-1, Tim-3) as well as effector caspase-3, -7, and -8 activity in T cells. SARS-CoV-2-specific T cell immunity conferred by polyfunctional, mainly interferon-γ-secreting CD4+ T cells remained stable throughout convalescence, whereas humoral responses declined. Immune responses toward huCoV in RCs with mild disease and strong cellular SARS-CoV-2 T cell reactivity imply a protective role of pre-existing immunity against huCoV.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunity, Cellular/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Humans , Immunity, Humoral/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
3.
Nature ; 609(7928): 801-807, 2022 09.
Article in English | MEDLINE | ID: mdl-35901960

ABSTRACT

Anorexia and fasting are host adaptations to acute infection, and induce a metabolic switch towards ketogenesis and the production of ketone bodies, including ß-hydroxybutyrate (BHB)1-6. However, whether ketogenesis metabolically influences the immune response in pulmonary infections remains unclear. Here we show that the production of BHB is impaired in individuals with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) but not in those with  influenza-induced ARDS. We found that BHB promotes both the survival of and the production of interferon-γ by CD4+ T cells. Applying a metabolic-tracing analysis, we established that BHB provides an alternative carbon source to fuel oxidative phosphorylation (OXPHOS) and the production of bioenergetic amino acids and glutathione, which is important for maintaining the redox balance. T cells from patients with SARS-CoV-2-induced ARDS were exhausted and skewed towards glycolysis, but could be metabolically reprogrammed by BHB to perform OXPHOS, thereby increasing their functionality. Finally, we show in mice that a ketogenic diet and the delivery of BHB as a ketone ester drink restores CD4+ T cell metabolism and function in severe respiratory infections, ultimately reducing the mortality of mice infected with SARS-CoV-2. Altogether, our data reveal that BHB is an alternative source of carbon that promotes T cell responses in pulmonary viral infections, and highlight impaired ketogenesis as a potential confounding factor in severe COVID-19.


Subject(s)
COVID-19 , Energy Metabolism , Ketones , Respiratory Distress Syndrome , SARS-CoV-2 , T-Lymphocytes , 3-Hydroxybutyric Acid/biosynthesis , 3-Hydroxybutyric Acid/metabolism , Amino Acids/biosynthesis , Amino Acids/metabolism , Animals , COVID-19/complications , COVID-19/immunology , COVID-19/pathology , Diet, Ketogenic , Esters/metabolism , Glutathione/biosynthesis , Glutathione/metabolism , Glycolysis , Interferon-gamma/biosynthesis , Ketone Bodies/metabolism , Ketones/metabolism , Mice , Orthomyxoviridae/pathogenicity , Oxidation-Reduction , Oxidative Phosphorylation , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
4.
PLoS Pathog ; 19(7): e1011493, 2023 07.
Article in English | MEDLINE | ID: mdl-37467233

ABSTRACT

S100A8/A9 has important immunomodulatory roles in antibacterial defense, but its relevance in focal pneumonia caused by Streptococcus pneumoniae (S. pneumoniae) is understudied. We show that S100A9 was significantly increased in BAL fluids of patients with bacterial but not viral pneumonia and correlated with procalcitonin and sequential organ failure assessment scores. Mice deficient in S100A9 exhibited drastically elevated Zn2+ levels in lungs, which led to bacterial outgrowth and significantly reduced survival. In addition, reduced survival of S100A9 KO mice was characterized by excessive release of neutrophil elastase, which resulted in degradation of opsonophagocytically important collectins surfactant proteins A and D. All of these features were attenuated in S. pneumoniae-challenged chimeric WT→S100A9 KO mice. Similarly, therapy of S. pneumoniae-infected S100A9 KO mice with a mutant S100A8/A9 protein showing increased half-life significantly decreased lung bacterial loads and lung injury. Collectively, S100A9 controls central antibacterial immune mechanisms of the lung with essential relevance to survival of pneumococcal pneumonia. Moreover, S100A9 appears to be a promising biomarker to distinguish patients with bacterial from those with viral pneumonia. Trial registration: Clinical Trials register (DRKS00000620).


Subject(s)
Pneumonia, Pneumococcal , Mice , Animals , Calgranulin B/genetics , Calgranulin B/metabolism , Lung , Streptococcus pneumoniae/metabolism , Calgranulin A/genetics , Calgranulin A/metabolism , Bacteria/metabolism , Mice, Knockout
5.
Article in German | MEDLINE | ID: mdl-38759685

ABSTRACT

Combining albumin dialysis for the removal of hydrophobic substances with classical haemodialysis in the treatment of acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) has a strong theoretical rational and clinical data showed a positive effect on laboratory and partly clinical characteristics of ALF and ACLF. However, neither the MARS nor the Prometheus System has so far been able to demonstrate a mortality benefit in ALF or ACLF patients. To date, only the use of therapeutic plasma exchange (TPE) has demonstrated significant removal of pathogen-associated (PAMPs), damage-associated molecular patterns (DAMPs) and pro-inflammatory cytokines. In addition, TPE also acts simultaneously by replacing protective but depleted mediators, thus improving multiple key pathophysiological principles of both ALF and ACLF. In ALF, both high-volume and standard-volume TPE showed a significant improvement in survival. The data on the use of TPE in ACLF is still sparse, with only two Chinese monocentric studies in patients with exclusively hepatitis B-associated ACLF suggesting potentially improved survival with TPE. The currently recruiting APACHE study will include patients with the modern EASL-CLIF definition of ACLF.


Subject(s)
Plasma Exchange , Humans , Renal Dialysis , Albumins/therapeutic use , Acute-On-Chronic Liver Failure/therapy , Liver Failure, Acute/therapy , Liver Failure/therapy , Treatment Outcome
6.
Cytokine ; 169: 156266, 2023 09.
Article in English | MEDLINE | ID: mdl-37354645

ABSTRACT

BACKGROUND: Angiopoietin-2 (Angpt-2) is involved in the pathogenesis of the capillary leak syndrome in sepsis and has been shown to be associated with worse outcomes in diverse critical illnesses. It is however unclear whether Angpt-2 plays a similar role in severely burned patients during the early phase characterized by massive capillary leakage. Our aim was to analyze the Angiopoietin-2/Angiopoietin-1 ratio (Angpt-2/Angpt-1 ratio) over the first two days in critically ill burn patients and examine its association with survival and further clinical parameters. METHODS: Adult burn patients with a total burn surface area (TBSA) ≥ 20% treated in the burn intensive care unit (ICU) of the University Hospital of Zurich, Switzerland, were included. Serum samples were collected prospectively and serum Angpt-1 and Angpt-2 were measured by enzyme-linked immunosorbent assay (ELISA) over the first two days after burn insult and stratified according to survival status, TBSA and the abbreviated burn severity index (ABSI). Due to hemodilution in the initial resuscitation phase, the Angpt-2/Angpt-1 ratio was normalized to albumin. RESULTS: Fifty-six patients were included with a median age of 51.5 years. Overall mortality was 14.3% (8/56 patients). The total amount of infused crystalloids was 12́902 ml (IQR 9́362-16́770 ml) at 24 h and 18́461 ml (IQR 13́024-23́766 ml) at 48 h. The amount of substituted albumin was 20 g (IQR 10-50 g) at 24 h and 50 g (IQR 20-60 g) at 48 h. The albumin-corrected Angpt-2/Angpt-1 ratios increased over the first 48 h after the burn insult (d0: 0.5 pg*l/ml*g [IQR 0.24 - 0.80 pg*l/ml*g]; d1: 0.83 pg*l/ml*g [IQR 0.29 - 1.98 pg*l/ml*g]; d2: 1.76 pg*l/ml*g [IQR 0.70 - 3.23 pg*l/ml*g]; p < 0.001) and were significantly higher in eventual ICU non-survivors (p = 0.005), in patients with a higher TBSA (p = 0.001) and in patients with a higher ABSI (p = 0.001). CONCLUSIONS: In analogy to the pathological host response in sepsis, the Angpt-2/Angpt-1 ratio steadily increases in the first two days in critically ill burn patients, suggesting a putative involvement in the pathogenesis of capillary leakage in burns. A higher Angpt-2/Angpt-1 ratio is associated with mortality, total burn surface area and burn scores.


Subject(s)
Angiopoietin-2 , Sepsis , Humans , Middle Aged , Angiopoietin-1 , Critical Illness , Intensive Care Units , Retrospective Studies
7.
Crit Care ; 27(1): 478, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057824

ABSTRACT

Sepsis, a dysregulated host response to infection characterized by organ failure, is one of the leading causes of death worldwide. Disbalances of the immune response play an important role in its pathophysiology. Patients may develop simultaneously or concomitantly states of systemic or local hyperinflammation and immunosuppression. Although a variety of effective immunomodulatory treatments are generally available, attempts to inhibit or stimulate the immune system in sepsis have failed so far to improve patients' outcome. The underlying reason is likely multifaceted including failure to identify responders to a specific immune intervention and the complex pathophysiology of organ dysfunction that is not exclusively caused by immunopathology but also includes dysfunction of the coagulation system, parenchymal organs, and the endothelium. Increasing evidence suggests that stratification of the heterogeneous population of septic patients with consideration of their host response might led to treatments that are more effective. The purpose of this review is to provide an overview of current studies aimed at optimizing the many facets of host response and to discuss future perspectives for precision medicine approaches in sepsis.


Subject(s)
Sepsis , Humans , Immunosuppression Therapy , Immunomodulation , Immunity
8.
Crit Care ; 27(1): 372, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37759239

ABSTRACT

BACKGROUND: Sepsis-induced immunosuppression is a frequent cause of opportunistic infections and death in critically ill patients. A better understanding of the underlying mechanisms is needed to develop targeted therapies. Circulating bile acids with immunosuppressive effects were recently identified in critically ill patients. These bile acids activate the monocyte G-protein coupled receptor TGR5, thereby inducing profound innate immune dysfunction. Whether these mechanisms contribute to immunosuppression and disease severity in sepsis is unknown. The aim of this study was to determine if immunosuppressive bile acids are present in endotoxemia and septic shock and, if so, which patients are particularly at risk. METHODS: To induce experimental endotoxemia in humans, ten healthy volunteers received 2 ng/kg E. coli lipopolysaccharide (LPS). Circulating bile acids were profiled before and after LPS administration. Furthermore, 48 patients with early (shock onset within < 24 h) and severe septic shock (norepinephrine dose > 0.4 µg/kg/min) and 48 healthy age- and sex-matched controls were analyzed for circulating bile acids. To screen for immunosuppressive effects of circulating bile acids, the capability to induce TGR5 activation was computed for each individual bile acid profile by a recently published formula. RESULTS: Although experimental endotoxemia as well as septic shock led to significant increases in total bile acids compared to controls, this increase was mild in most cases. By contrast, there was a marked and significant increase in circulating bile acids in septic shock patients with severe liver failure compared to healthy controls (61.8 µmol/L vs. 2.8 µmol/L, p = 0.0016). Circulating bile acids in these patients were capable to induce immunosuppression, as indicated by a significant increase in TGR5 activation by circulating bile acids (20.4% in severe liver failure vs. 2.8% in healthy controls, p = 0.0139). CONCLUSIONS: Circulating bile acids capable of inducing immunosuppression are present in septic shock patients with severe liver failure. Future studies should examine whether modulation of bile acid metabolism can improve the clinical course and outcome of sepsis in these patients.


Subject(s)
Endotoxemia , Liver Failure , Sepsis , Shock, Septic , Humans , Shock, Septic/metabolism , Endotoxemia/complications , Bile Acids and Salts , Lipopolysaccharides , Escherichia coli , Critical Illness
9.
Crit Care Med ; 50(6): e526-e538, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35020672

ABSTRACT

OBJECTIVES: Extracorporeal membrane oxygenation (ECMO) is a potentially lifesaving procedure in acute respiratory distress syndrome (ARDS) due to COVID-19. Previous studies have shown a high prevalence of clinically silent cerebral microbleeds in patients with COVID-19. Based on this fact, together with the hemotrauma and the requirement of therapeutic anticoagulation on ECMO support, we hypothesized an increased risk of intracranial hemorrhages (ICHs). We analyzed ICH occurrence rate, circumstances and clinical outcome in patients that received ECMO support due to COVID-19-induced ARDS in comparison to viral non-COVID-19-induced ARDS intracerebral hemorrhage. DESIGN: Multicenter, retrospective analysis between January 2010 and May 2021. SETTING: Three tertiary care ECMO centers in Germany and Switzerland. PATIENTS: Two-hundred ten ARDS patients on ECMO support (COVID-19, n = 142 vs viral non-COVID, n = 68). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Evaluation of ICH occurrence rate, parameters of coagulation and anticoagulation strategies, inflammation, and ICU survival. COVID-19 and non-COVID-19 ARDS patients showed comparable disease severity regarding Sequential Organ Failure Assessment score, while the oxygenation index before ECMO cannulation was higher in the COVID group (82 vs 65 mm Hg). Overall, ICH of any severity occurred in 29 of 142 COVID-19 patients (20%) versus four of 68 patients in the control ECMO group (6%). Fifteen of those 29 ICH events in the COVID-19 group were classified as major (52%) including nine fatal cases (9/29, 31%). In the control group, there was only one major ICH event (1/4, 25%). The adjusted subhazard ratio for the occurrence of an ICH in the COVID-19 group was 5.82 (97.5% CI, 1.9-17.8; p = 0.002). The overall ICU mortality in the presence of ICH of any severity was 88%. CONCLUSIONS: This retrospective multicenter analysis showed a six-fold increased adjusted risk for ICH and a 3.5-fold increased incidence of ICH in COVID-19 patients on ECMO. Prospective studies are needed to confirm this observation and to determine whether the bleeding risk can be reduced by adjusting anticoagulation strategies.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Anticoagulants/therapeutic use , COVID-19/complications , COVID-19/therapy , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/methods , Humans , Intracranial Hemorrhages/drug therapy , Intracranial Hemorrhages/epidemiology , Intracranial Hemorrhages/etiology , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Retrospective Studies
10.
BMC Infect Dis ; 22(1): 168, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35189821

ABSTRACT

BACKGROUND: Necrotizing soft-tissue infections are infections with high mortality. The use of immunoglobulins within a combination therapy including broad-spectrum antibiotics has been debated. We assessed potential benefits of immunoglobulins and hypothesized that they were associated with a treatment benefit in a high-resource setting. METHODS: Patients with necrotizing soft-tissue infection hospitalized in the tertiary intensive care unit of the University Hospital of Zurich, Switzerland, between 2008 and 2020 were included retrospectively. The association between immunoglobulin administration and in-hospital survival, intensive care unit length of stay, the incidences of acute renal failure, acute respiratory distress syndrome and septic shock were analyzed. RESULTS: After adjustment for confounders, no difference for in-hospital survival (hazard ratio 2.20, 95% confidence interval [CI] 0.24-20.20, p = 0.5), intensive care unit length of stay (subhazard ratio [SHR] 0.90, CI 0.41-1.98, p = 0.8) and the development of acute respiratory distress syndrome (SHR 1.2, CI 0.36-4.03, p = 0.77) was observed in patients with or without immunoglobulin treatment. The Simplified Acute Physiology Score II, the risk of developing acute renal failure (SHR 2.86, CI 1.33-6.15, p = 0.01) and septic shock (SHR 1.86, CI 1.02-3.40, p = 0.04) was higher in patients treated with immunoglobulins, possibly reflecting a higher disease severity beyond measured confounders. CONCLUSIONS: No clear evidence for a benefit of immunoglobulins in our cohort with consistent antibiotic use was found. Patients receiving immunoglobulins appeared more severely ill. Complementary to high treatment standards and appropriate antibiotics including beta lactams and protein synthesis inhibitors, immunoglobulins should be administered on a case-to-case basis, at least while more evidence from larger randomized controlled trials is missing.


Subject(s)
Immunoglobulins, Intravenous , Soft Tissue Infections , Critical Illness , Humans , Immunoglobulins, Intravenous/therapeutic use , Intensive Care Units , Retrospective Studies , Soft Tissue Infections/drug therapy
11.
Crit Care ; 26(1): 148, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35606831

ABSTRACT

BACKGROUND: A higher-than-usual resistance to standard sedation regimens in COVID-19 patients suffering from acute respiratory distress syndrome (ARDS) has led to the frequent use of the second-line anaesthetic agent ketamine. Simultaneously, an increased incidence of cholangiopathies in mechanically ventilated patients receiving prolonged infusion of high-dose ketamine has been noted. Therefore, the objective of this study was to investigate a potential dose-response relationship between ketamine and bilirubin levels. METHODS: Post hoc analysis of a prospective observational cohort of patients suffering from COVID-19-associated ARDS between March 2020 and August 2021. A time-varying, multivariable adjusted, cumulative weighted exposure mixed-effects model was employed to analyse the exposure-effect relationship between ketamine infusion and total bilirubin levels. RESULTS: Two-hundred forty-three critically ill patients were included into the analysis. Ketamine was infused to 170 (70%) patients at a rate of 1.4 [0.9-2.0] mg/kg/h for 9 [4-18] days. The mixed-effects model revealed a positively correlated infusion duration-effect as well as dose-effect relationship between ketamine infusion and rising bilirubin levels (p < 0.0001). In comparison, long-term infusion of propofol and sufentanil, even at high doses, was not associated with increasing bilirubin levels (p = 0.421, p = 0.258). Patients having received ketamine infusion had a multivariable adjusted competing risk hazard of developing a cholestatic liver injury during their ICU stay of 3.2 [95% confidence interval, 1.3-7.8] (p = 0.01). CONCLUSIONS: A causally plausible, dose-effect relationship between long-term infusion of ketamine and rising total bilirubin levels, as well as an augmented, ketamine-associated, hazard of cholestatic liver injury in critically ill COVID-19 patients could be shown. High-dose ketamine should be refrained from whenever possible for the long-term analgosedation of mechanically ventilated COVID-19 patients.


Subject(s)
COVID-19 , Ketamine , Propofol , Respiratory Distress Syndrome , Bilirubin , COVID-19/complications , Critical Illness , Humans , Hypnotics and Sedatives/adverse effects , Ketamine/adverse effects , Liver , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/chemically induced , Retrospective Studies
12.
Crit Care ; 26(1): 134, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551628

ABSTRACT

BACKGROUND: Recently, a randomized controlled trial (RCT) demonstrated rapid but individually variable hemodynamic improvement with therapeutic plasma exchange (TPE) in patients with septic shock. Prediction of clinical efficacy in specific sepsis treatments is fundamental for individualized sepsis therapy. METHODS: In the original RCT, patients with septic shock of < 24 h duration and norepinephrine (NE) requirement ≥ 0.4 µg/kg/min received standard of care (SOC) or SOC + one single TPE. Here, we report all clinical and biological endpoints of this study. Multivariate mixed-effects modeling of NE reduction was performed to investigate characteristics that could be associated with clinical response to TPE. RESULTS: A continuous effect of TPE on the reduction in NE doses over the initial 24 h was observed (SOC group: estimated NE dose reduction of 0.005 µg/kg/min per hour; TPE group: 0.018 µg/kg/min per hour, p = 0.004). Similarly, under TPE, serum lactate levels, continuously decreased over the initial 24 h in the TPE group, whereas lactate levels increased under SOC (p = 0.001). A reduction in biomarkers and disease mediators (such as PCT (p = 0.037), vWF:Ag (p < 0.001), Angpt-2 (p = 0.009), sTie-2 (p = 0.005)) along with a repletion of exhausted protective factors (such as AT-III (p = 0.026), Protein C (p = 0.012), ADAMTS-13 (p = 0.008)) could be observed in the TPE but not in the SOC group. In a multivariate mixed effects model, increasing baseline lactate levels led to greater NE dose reduction effects with TPE as opposed to SOC (p = 0.004). CONCLUSIONS: Adjunctive TPE is associated with the removal of injurious mediators and repletion of consumed protective factors altogether leading to preserved hemodynamic stabilization in refractory septic shock. We identified that baseline lactate concentration as a potential response predictor might guide future designing of large RCTs that will further evaluate TPE with regard to hard endpoints. Trial registration Retrospectively registered 18th January 2020 at clinicaltrials.gov (Identifier: NCT04231994 ).


Subject(s)
Sepsis , Shock, Septic , Shock , Humans , Lactates , Norepinephrine/therapeutic use , Plasma Exchange/methods , Sepsis/therapy , Shock/therapy , Shock, Septic/therapy
13.
Crit Care ; 26(1): 92, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379286

ABSTRACT

BACKGROUND: Non-occlusive mesenteric ischemia (NOMI) is a life-threatening condition occurring in patients with shock and is characterized by vasoconstriction of the mesenteric arteries leading to intestinal ischemia and multi-organ failure. Although minimal invasive local intra-arterial infusion of vasodilators into the mesenteric circulation has been suggested as a therapeutic option in NOMI, current knowledge is based on retrospective case series and it remains unclear which patients might benefit. Here, we prospectively analyzed predictors of response to intra-arterial therapy in patients with NOMI. METHODS: This is a prospective single-center observational study to analyze improvement of ischemia (indicated by reduction of blood lactate > 2 mmol/l from baseline after 24 h, primary endpoint) and 28-day mortality (key secondary endpoint) in patients with NOMI undergoing intra-arterial vasodilatory therapy. Predictors of response to therapy concerning primary and key secondary endpoint were identified using a) clinical parameters as well as b) data from 2D-perfusion angiography and c) experimental biomarkers of intestinal injury. RESULTS: A total of 42 patients were included into this study. At inclusion patients had severe shock, indicated by high doses of norepinephrine (NE) (median (interquartile range (IQR)) 0.37 (0.21-0.60) µg/kg/min), elevated lactate concentrations (9.2 (5.2-13) mmol/l) and multi-organ failure. Patients showed a continuous reduction of lactate following intra-arterial prostaglandin infusion (baseline: (9.2 (5.2-13) mmol/l vs. 24 h: 4.4 (2.5-9.1) mmol/l, p < 0.001) with 22 patients (52.4%) reaching a lactate reduction > 2 mmol/l at 24 h following intervention. Initial higher lactate concentrations and lower NE doses at baseline were independent predictors of an improvement of ischemia. 28-day mortality was 59% in patients with a reduction of lactate > 2 mmol/l 24 h after inclusion, while it was 85% in all other patients (hazard ratio 0.409; 95% CI, 0.14-0.631, p = 0.005). CONCLUSIONS: A reduction of lactate concentrations was observed following implementation of intra-arterial therapy, and lactate reduction was associated with better survival. Our findings concerning outcome predictors in NOMI patients undergoing intra-arterial prostaglandin therapy might help designing a randomized controlled trial to further investigate this therapeutic approach. Trial registration Retrospectively registered on January 22, 2020, at clinicaltrials.gov (REPERFUSE, NCT04235634), https://clinicaltrials.gov/ct2/show/NCT04235634?cond=NOMI&draw=2&rank=1 .


Subject(s)
Mesenteric Ischemia , Shock , Humans , Mesenteric Ischemia/drug therapy , Prospective Studies , Retrospective Studies , Shock/drug therapy , Vasodilation
14.
Crit Care ; 26(1): 199, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35787726

ABSTRACT

BACKGROUND: It remains elusive how the characteristics, the course of disease, the clinical management and the outcomes of critically ill COVID-19 patients admitted to intensive care units (ICU) worldwide have changed over the course of the pandemic. METHODS: Prospective, observational registry constituted by 90 ICUs across 22 countries worldwide including patients with a laboratory-confirmed, critical presentation of COVID-19 requiring advanced organ support. Hierarchical, generalized linear mixed-effect models accounting for hospital and country variability were employed to analyse the continuous evolution of the studied variables over the pandemic. RESULTS: Four thousand forty-one patients were included from March 2020 to September 2021. Over this period, the age of the admitted patients (62 [95% CI 60-63] years vs 64 [62-66] years, p < 0.001) and the severity of organ dysfunction at ICU admission decreased (Sequential Organ Failure Assessment 8.2 [7.6-9.0] vs 5.8 [5.3-6.4], p < 0.001) and increased, while more female patients (26 [23-29]% vs 41 [35-48]%, p < 0.001) were admitted. The time span between symptom onset and hospitalization as well as ICU admission became longer later in the pandemic (6.7 [6.2-7.2| days vs 9.7 [8.9-10.5] days, p < 0.001). The PaO2/FiO2 at admission was lower (132 [123-141] mmHg vs 101 [91-113] mmHg, p < 0.001) but showed faster improvements over the initial 5 days of ICU stay in late 2021 compared to early 2020 (34 [20-48] mmHg vs 70 [41-100] mmHg, p = 0.05). The number of patients treated with steroids and tocilizumab increased, while the use of therapeutic anticoagulation presented an inverse U-shaped behaviour over the course of the pandemic. The proportion of patients treated with high-flow oxygen (5 [4-7]% vs 20 [14-29], p < 0.001) and non-invasive mechanical ventilation (14 [11-18]% vs 24 [17-33]%, p < 0.001) throughout the pandemic increased concomitant to a decrease in invasive mechanical ventilation (82 [76-86]% vs 74 [64-82]%, p < 0.001). The ICU mortality (23 [19-26]% vs 17 [12-25]%, p < 0.001) and length of stay (14 [13-16] days vs 11 [10-13] days, p < 0.001) decreased over 19 months of the pandemic. CONCLUSION: Characteristics and disease course of critically ill COVID-19 patients have continuously evolved, concomitant to the clinical management, throughout the pandemic leading to a younger, less severely ill ICU population with distinctly different clinical, pulmonary and inflammatory presentations than at the onset of the pandemic.


Subject(s)
COVID-19 , Pandemics , COVID-19/therapy , Critical Illness/epidemiology , Critical Illness/therapy , Female , Humans , Intensive Care Units , Middle Aged , Prospective Studies , Registries
15.
Am J Respir Crit Care Med ; 204(1): 53-63, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33760701

ABSTRACT

Rationale: Acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome with a mortality of up to 40%. Precision medicine approaches targeting patients on the basis of their molecular phenotypes of ARDS might help to identify effective pharmacotherapies. The inflammasome-caspase-1 pathway contributes to the development of ARDS via IL-1ß and IL-18 production. Recent studies indicate that tetracycline can be used to treat inflammatory diseases mediated by IL-1ß and IL-18, although the molecular mechanism by which tetracycline inhibits inflammasome-caspase-1 signaling remains unknown. Objectives: To identify patients with ARDS characterized by IL-1ß and IL-18 expression and investigate the ability of tetracycline to inhibit inflammasome-caspase-1 signaling in ARDS. Methods: IL-1ß and IL-18 concentrations were quantified in BAL fluid from patients with ARDS. Tetracycline's effects on lung injury and inflammation were assessed in two mouse models of direct (pulmonary) acute lung injury, and its effects on IL-1ß and IL-18 production were assessed by alveolar leukocytes from patients with direct ARDS ex vivo. Murine macrophages were used to further characterize the effect of tetracycline on the inflammasome-caspase-1 pathway. Measurements and Main Results: BAL fluid concentrations of IL-1ß and IL-18 are significantly higher in patients with direct ARDS than those with indirect (nonpulmonary) ARDS. In experimental acute lung injury, tetracycline significantly diminished lung injury and pulmonary inflammation by selectively inhibiting caspase-1-dependent IL-1ß and IL-18 production, leading to improved survival. Tetracycline also reduced the production of IL-1ß and IL-18 by alveolar leukocytes from patients with direct ARDS. Conclusions: Tetracycline may be effective in the treatment of direct ARDS in patients with elevated caspase-1 activity. Clinical Trial registered with www.clinicaltrials.gov (NCT04079426).


Subject(s)
Acute Lung Injury/prevention & control , Caspase 1/metabolism , Inflammasomes/metabolism , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/genetics , Tetracycline/metabolism , Acute Lung Injury/etiology , Animals , Anti-Bacterial Agents/metabolism , Enzyme Inhibitors/metabolism , Humans , Immunomodulation , Interleukin-18/genetics , Interleukin-1beta/genetics , Mice , Models, Animal , Respiratory Distress Syndrome/physiopathology
16.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L590-L599, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33237794

ABSTRACT

Despite the pandemic status of COVID-19, there is limited information about host risk factors and treatment beyond supportive care. Immunoglobulin G (IgG) could be a potential treatment target. Our aim was to determine the incidence of IgG deficiency and associated risk factors in a cohort of 62 critically ill patients with COVID-19 admitted to two German ICUs (72.6% male, median age: 61 yr). Thirteen (21.0%) of the patients displayed IgG deficiency (IgG < 7 g/L) at baseline (predominant for the IgG1, IgG2, and IgG4 subclasses). Patients who were IgG-deficient had worse measures of clinical disease severity than those with normal IgG levels (shorter duration from disease onset to ICU admission, lower ratio of [Formula: see text] to [Formula: see text], higher Sequential Organ Failure Assessment score, and higher levels of ferritin, neutrophil-to-lymphocyte ratio, and serum creatinine). Patients who were IgG-deficient were also more likely to have sustained lower levels of lymphocyte counts and higher levels of ferritin throughout the hospital stay. Furthermore, patients who were IgG-deficient compared with those with normal IgG levels displayed higher rates of acute kidney injury (76.9% vs. 26.5%; P = 0.001) and death (46.2% vs. 14.3%; P = 0.012), longer ICU [28 (6-48) vs. 12 (3-18) days; P = 0.012] and hospital length of stay [30 (22-50) vs. 18 (9-24) days; P = 0.004]. Univariable logistic regression showed increasing odds of 90-day overall mortality associated with IgG-deficiency (odds ratio 5.14, 95% confidence interval 1.3-19.9; P = 0.018). IgG deficiency might be common in patients with COVID-19 who are critically ill, and warrants investigation as both a marker of disease severity as well as a potential therapeutic target.


Subject(s)
COVID-19/virology , Immunoglobulins/deficiency , SARS-CoV-2/pathogenicity , Severity of Illness Index , Cohort Studies , Female , Humans , Intensive Care Units , Male , Middle Aged , Risk Factors
17.
Crit Care ; 24(1): 701, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397427

ABSTRACT

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) support in acute respiratory failure may be lifesaving, but bleeding and thromboembolic complications are common. The optimal anticoagulation strategy balancing these factors remains to be determined. This retrospective study compared two institutional anticoagulation management strategies focussing on oxygenator changes and both bleeding and thromboembolic events. METHODS: We conducted a retrospective observational cohort study between 04/2015 and 02/2020 in two ECMO referral centres in Germany in patients receiving veno-venous (VV)-ECMO support for acute respiratory failure for > 24 h. One centre routinely applied low-dose heparinization aiming for a partial thromboplastin time (PTT) of 35-40 s and the other routinely used a high-dose therapeutic heparinization strategy aiming for an activated clotting time (ACT) of 140-180 s. We assessed number of and time to ECMO oxygenator changes, 15-day freedom from oxygenator change, major bleeding events, thromboembolic events, 30-day ICU mortality, activated clotting time and partial thromboplastin time and administration of blood products. Primary outcome was the occurrence of oxygenator changes depending on heparinization strategy; main secondary outcomes were the occurrence of severe bleeding events and occurrence of thromboembolic events. The transfusion strategy was more liberal in the low-dose centre. RESULTS: Of 375 screened patients receiving VV-ECMO support, 218 were included in the analysis (117 high-dose group; 101 low-dose group). Disease severity measured by SAPS II score was 46 (IQR 36-57) versus 47 (IQR 37-55) and ECMO runtime was 8 (IQR 5-12) versus 11 (IQR 7-17) days (P = 0.003). There were 14 oxygenator changes in the high-dose group versus 48 in the low-dose group. Freedom from oxygenator change at 15 days was 73% versus 55% (adjusted HR 3.34 [95% confidence interval 1.2-9.4]; P = 0.023). Severe bleeding events occurred in 23 (19.7%) versus 14 (13.9%) patients (P = 0.256) and thromboembolic events occurred in 8 (6.8%) versus 19 (19%) patients (P = 0.007). Mortality at 30 days was 33.3% versus 30.7% (P = 0.11). CONCLUSIONS: In this retrospective study, ECMO management with high-dose heparinization was associated with lower rates of oxygenator changes and thromboembolic events when compared to a low-dose heparinization strategy. Prospective, randomized trials are needed to determine the optimal anticoagulation strategy in patients receiving ECMO support.


Subject(s)
Anticoagulants/administration & dosage , Respiratory Insufficiency/therapy , Treatment Outcome , Adult , Anticoagulants/therapeutic use , Blood Coagulation/drug effects , Blood Coagulation Tests/methods , Cohort Studies , Extracorporeal Membrane Oxygenation/methods , Extracorporeal Membrane Oxygenation/statistics & numerical data , Female , Germany , Humans , Male , Middle Aged , Organ Dysfunction Scores , Respiratory Insufficiency/physiopathology , Retrospective Studies , Simplified Acute Physiology Score
18.
Crit Care ; 25(1): 76, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33618730

ABSTRACT

BACKGROUND: Capillary leakage is a key contributor to the pathological host response to infections. The underlying mechanisms remain incompletely understood, and the role of microRNAs (MIR) has not been investigated in detail. We hypothesized that specific MIRs might be regulated directly in the endothelium thereby contributing to vascular leakage. METHODS: SmallRNA sequencing of endotoxemic murine pulmonary endothelial cells (ECs) was done to detect regulated vascular MIRs. In vivo models: transgenic zebrafish (flk1:mCherry/l-fabp:eGFP-DPB), knockout/wildtype mouse (B6.Cg-Mir155tm1.1Rsky/J); disease models: LPS 17.5 mg/kgBW and cecal ligation and puncture (CLP); in vitro models: stimulated human umbilical vein EC (HUVECs), transendothelial electrical resistance. RESULTS: Endothelial MIR155 was identified as a promising candidate in endotoxemic murine pulmonary ECs (25 × upregulation). Experimental overexpression in a transgenic zebrafish line and in HUVECs was sufficient to induce spontaneous vascular leakage. To the contrary, genetic MIR155 reduction protects against permeability both in vitro and in endotoxemia in vivo in MIR155 heterozygote knockout mice thereby improving survival by 40%. A tight junction protein, Claudin-1, was down-regulated both in endotoxemia and by experimental MIR155 overexpression. Translationally, MIR155 was detectable at high levels in bronchoalveolar fluid of patients with ARDS compared to healthy human subjects. CONCLUSIONS: We found that MIR155 is upregulated in the endothelium in mouse and men as part of a systemic inflammatory response and might contribute to the pathophysiology of vascular leakage in a Claudin-1-dependent manner. Future studies have to clarify whether MIR155 could be a potential therapeutic target.


Subject(s)
Capillary Leak Syndrome/drug therapy , Endothelium, Vascular/drug effects , MicroRNAs/pharmacology , Animals , Capillary Leak Syndrome/etiology , Endothelium, Vascular/metabolism , Humans , Mice , MicroRNAs/therapeutic use , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/drug therapy , Zebrafish
19.
Crit Care ; 25(1): 175, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34034782

ABSTRACT

BACKGROUND: Uncertainty about the optimal respiratory support strategies in critically ill COVID-19 patients is widespread. While the risks and benefits of noninvasive techniques versus early invasive mechanical ventilation (IMV) are intensely debated, actual evidence is lacking. We sought to assess the risks and benefits of different respiratory support strategies, employed in intensive care units during the first months of the COVID-19 pandemic on intubation and intensive care unit (ICU) mortality rates. METHODS: Subanalysis of a prospective, multinational registry of critically ill COVID-19 patients. Patients were subclassified into standard oxygen therapy ≥10 L/min (SOT), high-flow oxygen therapy (HFNC), noninvasive positive-pressure ventilation (NIV), and early IMV, according to the respiratory support strategy employed at the day of admission to ICU. Propensity score matching was performed to ensure comparability between groups. RESULTS: Initially, 1421 patients were assessed for possible study inclusion. Of these, 351 patients (85 SOT, 87 HFNC, 87 NIV, and 92 IMV) remained eligible for full analysis after propensity score matching. 55% of patients initially receiving noninvasive respiratory support required IMV. The intubation rate was lower in patients initially ventilated with HFNC and NIV compared to those who received SOT (SOT: 64%, HFNC: 52%, NIV: 49%, p = 0.025). Compared to the other respiratory support strategies, NIV was associated with a higher overall ICU mortality (SOT: 18%, HFNC: 20%, NIV: 37%, IMV: 25%, p = 0.016). CONCLUSION: In this cohort of critically ill patients with COVID-19, a trial of HFNC appeared to be the most balanced initial respiratory support strategy, given the reduced intubation rate and comparable ICU mortality rate. Nonetheless, considering the uncertainty and stress associated with the COVID-19 pandemic, SOT and early IMV represented safe initial respiratory support strategies. The presented findings, in agreement with classic ARDS literature, suggest that NIV should be avoided whenever possible due to the elevated ICU mortality risk.


Subject(s)
COVID-19/therapy , Critical Illness/therapy , Respiratory Therapy/methods , Respiratory Therapy/statistics & numerical data , Aged , COVID-19/mortality , Critical Illness/mortality , Disease Progression , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Prospective Studies , Registries , Retrospective Studies , Time Factors , Treatment Outcome
20.
J Intensive Care Med ; 36(12): 1491-1497, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33063613

ABSTRACT

BACKGROUND: Deficiency of immunoglobulins of the classes IgG, IgG1, IgA and IgM is associated with severity of disease and mortality in sepsis and septic shock. Therapeutic plasma exchange (TPE) with fresh frozen plasma (FFP) has recently gained attention as an adjunctive therapeutic option in early septic shock. We hypothesized that TPE might modulate immunoglobulin deficiencies besides sole elimination of circulating injurious molecules. METHODS: We conducted a prospective single center study with TPE in 33 patients with early septic shock (onset < 12 h) requiring high doses of norepinephrine (NE > 0.4µg/kg/min). Clinical and biochemical data, including measurement of immunoglobulin subgroups IgG, IgG1, IgM and IgA were obtained before and after TPE. The following immunoglobulin cut-off values were used to analyze subgroups with low immunoglobulin concentrations at baseline (IgG ≤ 6.5, IgG1 ≤ 3, IgM ≤ 1.5 and IgA ≤ 0.35 g/L). RESULTS: At inclusion, median (IQR) SOFA score was 18 (15-20) and NE dose was 0.8 (0.6-1.2) µg/kg/min. The majority of patients demonstrated profound reductions in immunoglobulins levels of all classes. Globally, immunoglobulin levels were not significantly changed after a single TPE session. However, in patients with low baseline immunoglobulin levels a significant increase in all classes was observed (IgG 1.92 (0.96-3) g/L (+41%), IgG1 2.1 (1.46-2.32) g/L (+96%), IgA 0.44 (0.12-0.62) g/L (59%) and IgM 0.18 (0.14-0.34) g/L (+55%), p < 0.001 for comparison to patients above cut-off). CONCLUSIONS: The majority of early and severe septic shock patients had reduced immunoglobulin levels and a single TPE could attenuate immunoglobulin deficiencies of all classes. The clinical relevance of this observation has to be investigated in a proper designed trial.


Subject(s)
Sepsis , Shock, Septic , Humans , Immunoglobulins , Plasma Exchange , Prospective Studies , Sepsis/therapy , Shock, Septic/therapy
SELECTION OF CITATIONS
SEARCH DETAIL