Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Biol Chem ; 295(44): 15054-15069, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32855239

ABSTRACT

Strategies to increase energy expenditure are an attractive approach to reduce excess fat storage and body weight to improve metabolic health. In mammals, uncoupling protein-1 (UCP1) in brown and beige adipocytes uncouples fatty acid oxidation from ATP generation in mitochondria and promotes energy dissipation as heat. We set out to identify small molecules that enhance UCP1 levels and activity using a high-throughput screen of nearly 12,000 compounds in mouse brown adipocytes. We identified a family of compounds that increase Ucp1 expression and mitochondrial activity (including un-coupled respiration) in mouse brown adipocytes and human brown and white adipocytes. The mechanism of action may be through compound binding to A kinase anchoring protein (AKAP) 1, modulating its localization to mitochondria and its interaction with protein kinase A (PKA), a known node in the ß-adrenergic signaling pathway. In mice, the hit compound increased body temperature, UCP1 protein levels, and thermogenic gene expression. Some of the compound effects on mitochondrial function were UCP1- or AKAP1-independent, suggesting compound effects on multiple nodes of energy regulation. Overall, our results highlight a role for AKAP1 in thermogenesis, uncoupled respiration, and regulation energy balance.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Small Molecule Libraries/pharmacology , Thermogenesis/drug effects , Uncoupling Protein 1/biosynthesis , Adipocytes, Brown/enzymology , Adipocytes, Brown/metabolism , Adipocytes, White/enzymology , Adipocytes, White/metabolism , Animals , Cells, Cultured , Energy Metabolism , Enzyme Activation , Gene Expression Profiling , High-Throughput Screening Assays , Humans , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Reproducibility of Results , Signal Transduction
2.
Nat Commun ; 13(1): 1748, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365625

ABSTRACT

The endoplasmic reticulum (ER) regulates cellular protein and lipid biosynthesis. ER dysfunction leads to protein misfolding and the unfolded protein response (UPR), which limits protein synthesis to prevent cytotoxicity. Chronic ER stress in skeletal muscle is a unifying mechanism linking lipotoxicity to metabolic disease. Unidentified signals from cells undergoing ER stress propagate paracrine and systemic UPR activation. Here, we induce ER stress and lipotoxicity in myotubes. We observe ER stress-inducing lipid cell non-autonomous signal(s). Lipidomics identifies that palmitate-induced cell stress induces long-chain ceramide 40:1 and 42:1 secretion. Ceramide synthesis through the ceramide synthase 2 de novo pathway is regulated by UPR kinase Perk. Inactivation of CerS2 in mice reduces systemic and muscle ceramide signals and muscle UPR activation. The ceramides are packaged into extracellular vesicles, secreted and induce UPR activation in naïve myotubes through dihydroceramide accumulation. This study furthers our understanding of ER stress by identifying UPR-inducing cell non-autonomous signals.


Subject(s)
Ceramides , Endoplasmic Reticulum Stress , Animals , Ceramides/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Mice , Muscle, Skeletal/metabolism , Unfolded Protein Response
3.
Nat Commun ; 12(1): 1905, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33772024

ABSTRACT

Brown and beige adipose tissue are emerging as distinct endocrine organs. These tissues are functionally associated with skeletal muscle, adipose tissue metabolism and systemic energy expenditure, suggesting an interorgan signaling network. Using metabolomics, we identify 3-methyl-2-oxovaleric acid, 5-oxoproline, and ß-hydroxyisobutyric acid as small molecule metabokines synthesized in browning adipocytes and secreted via monocarboxylate transporters. 3-methyl-2-oxovaleric acid, 5-oxoproline and ß-hydroxyisobutyric acid induce a brown adipocyte-specific phenotype in white adipocytes and mitochondrial oxidative energy metabolism in skeletal myocytes both in vitro and in vivo. 3-methyl-2-oxovaleric acid and 5-oxoproline signal through cAMP-PKA-p38 MAPK and ß-hydroxyisobutyric acid via mTOR. In humans, plasma and adipose tissue 3-methyl-2-oxovaleric acid, 5-oxoproline and ß-hydroxyisobutyric acid concentrations correlate with markers of adipose browning and inversely associate with body mass index. These metabolites reduce adiposity, increase energy expenditure and improve glucose and insulin homeostasis in mouse models of obesity and diabetes. Our findings identify beige adipose-brown adipose-muscle physiological metabokine crosstalk.


Subject(s)
Adipose Tissue, Beige/metabolism , Adipose Tissue, Brown/metabolism , Energy Metabolism/genetics , Homeostasis/genetics , Signal Transduction/genetics , Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adipose Tissue, Beige/cytology , Adipose Tissue, Brown/cytology , Animals , Cell Line , Cells, Cultured , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Gene Expression Profiling/methods , Humans , Male , Mass Spectrometry , Metabolomics/methods , Mice, Inbred C57BL
4.
J Clin Endocrinol Metab ; 101(11): 4440-4448, 2016 11.
Article in English | MEDLINE | ID: mdl-27575944

ABSTRACT

CONTEXT: Patients with pheochromocytoma (pheo) show presence of multilocular adipocytes that express uncoupling protein 1 within periadrenal (pADR) and omental (OME) fat depots. It has been hypothesized that this is due to adrenergic stimulation by catecholamines produced by the pheo tumors. OBJECTIVE: To characterize the prevalence and respiratory activity of brown-like adipocytes within pADR, OME, and SC fat depots in human adult pheo patients. DESIGN: This was an observational cohort study. SETTING: The study took place in a university hospital. PATIENTS: We studied 46 patients who underwent surgery for benign adrenal tumors (21 pheos and 25 controls with adrenocortical adenomas). MAIN OUTCOME MEASURE: We characterized adipocyte browning in pADR, SC, and OME fat depots for histological and immunohistological features, mitochondrial respiration rate, and gene expression. We also determined circulating levels of catecholamines and other browning-related hormones. RESULTS: Eleven of 21 pheo pADR adipose samples, but only one of 25 pADR samples from control patients exhibited multilocular adipocytes. The pADR browning phenotype was associated with higher plasma catecholamines and raised uncoupling protein 1. Mitochondria from multilocular pADR fat of pheo patients exhibited increased rates of coupled and uncoupled respiration. Global gene expression analysis in pADR fat revealed enrichment in ß-oxidation genes in pheo patients with multilocular adipocytes. No SC or OME fat depots exhibited aspects of browning. CONCLUSION: Browning of the pADR depot occurred in half of pheo patients and was associated with increased catecholamines and mitochondrial activity. No browning was detected in other fat depots, suggesting that other factors are required to promote browning in these depots.


Subject(s)
Adipocytes/metabolism , Adrenal Gland Neoplasms/metabolism , Catecholamines/metabolism , Intra-Abdominal Fat/metabolism , Mitochondria/metabolism , Pheochromocytoma/metabolism , Subcutaneous Fat, Abdominal/metabolism , Adipocytes, Brown/metabolism , Adrenal Gland Neoplasms/surgery , Adult , Aged , Female , Gene Expression , Humans , Male , Middle Aged , Pheochromocytoma/surgery
SELECTION OF CITATIONS
SEARCH DETAIL