Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 821
Filter
Add more filters

Publication year range
1.
Immunity ; 54(3): 571-585.e6, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33497609

ABSTRACT

CRISPR-Cas9 genome engineering has increased the pace of discovery for immunology and cancer biology, revealing potential therapeutic targets and providing insight into mechanisms underlying resistance to immunotherapy. However, endogenous immune recognition of Cas9 has limited the applicability of CRISPR technologies in vivo. Here, we characterized immune responses against Cas9 and other expressed CRISPR vector components that cause antigen-specific tumor rejection in several mouse cancer models. To avoid unwanted immune recognition, we designed a lentiviral vector system that allowed selective CRISPR antigen removal (SCAR) from tumor cells. The SCAR system reversed immune-mediated rejection of CRISPR-modified tumor cells in vivo and enabled high-throughput genetic screens in previously intractable models. A pooled in vivo screen using SCAR in a CRISPR-antigen-sensitive renal cell carcinoma revealed resistance pathways associated with autophagy and major histocompatibility complex class I (MHC class I) expression. Thus, SCAR presents a resource that enables CRISPR-based studies of tumor-immune interactions and prevents unwanted immune recognition of genetically engineered cells, with implications for clinical applications.


Subject(s)
Carcinoma, Renal Cell/immunology , Genetic Testing/methods , Genetic Vectors/genetics , Immunotherapy/methods , Kidney Neoplasms/immunology , Killer Cells, Natural/immunology , Lentivirus/genetics , Animals , Antigen Presentation , Autophagy , Carcinoma, Renal Cell/therapy , Cells, Cultured , Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Engineering , Histocompatibility Antigens Class I/metabolism , Kidney Neoplasms/therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Targeted Therapy
2.
Nature ; 615(7950): 158-167, 2023 03.
Article in English | MEDLINE | ID: mdl-36634707

ABSTRACT

Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.


Subject(s)
Drug Resistance, Neoplasm , Immune Evasion , Immunotherapy , Protein Serine-Threonine Kinases , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Organoids , Tumor Necrosis Factors/immunology , Interferon-gamma/immunology , Spheroids, Cellular , Caspases , Janus Kinases , STAT Transcription Factors
3.
Nature ; 622(7984): 850-862, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794185

ABSTRACT

Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.


Subject(s)
Immunotherapy , Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors , Immunotherapy/methods , Interferons/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 2/antagonists & inhibitors , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
4.
Nature ; 595(7866): 309-314, 2021 07.
Article in English | MEDLINE | ID: mdl-33953401

ABSTRACT

Epigenetic dysregulation is a defining feature of tumorigenesis that is implicated in immune escape1,2. Here, to identify factors that modulate the immune sensitivity of cancer cells, we performed in vivo CRISPR-Cas9 screens targeting 936 chromatin regulators in mouse tumour models treated with immune checkpoint blockade. We identified the H3K9 methyltransferase SETDB1 and other members of the HUSH and KAP1 complexes as mediators of immune escape3-5. We also found that amplification of SETDB1 (1q21.3) in human tumours is associated with immune exclusion and resistance to immune checkpoint blockade. SETDB1 represses broad domains, primarily within the open genome compartment. These domains are enriched for transposable elements (TEs) and immune clusters associated with segmental duplication events, a central mechanism of genome evolution6. SETDB1 loss derepresses latent TE-derived regulatory elements, immunostimulatory genes, and TE-encoded retroviral antigens in these regions, and triggers TE-specific cytotoxic T cell responses in vivo. Our study establishes SETDB1 as an epigenetic checkpoint that suppresses tumour-intrinsic immunogenicity, and thus represents a candidate target for immunotherapy.


Subject(s)
Gene Silencing , Histone-Lysine N-Methyltransferase/metabolism , Neoplasms/genetics , Neoplasms/immunology , Animals , Antigens, Viral/immunology , CRISPR-Cas Systems/genetics , Chromatin/genetics , Chromatin/metabolism , DNA Transposable Elements/genetics , Disease Models, Animal , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Mice , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology
5.
Mol Cell ; 74(1): 196-211.e11, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30799147

ABSTRACT

The compendium of RNA-binding proteins (RBPs) has been greatly expanded by the development of RNA-interactome capture (RIC). However, it remained unknown if the complement of RBPs changes in response to environmental perturbations and whether these rearrangements are important. To answer these questions, we developed "comparative RIC" and applied it to cells challenged with an RNA virus called sindbis (SINV). Over 200 RBPs display differential interaction with RNA upon SINV infection. These alterations are mainly driven by the loss of cellular mRNAs and the emergence of viral RNA. RBPs stimulated by the infection redistribute to viral replication factories and regulate the capacity of the virus to infect. For example, ablation of XRN1 causes cells to be refractory to SINV, while GEMIN5 moonlights as a regulator of SINV gene expression. In summary, RNA availability controls RBP localization and function in SINV-infected cells.


Subject(s)
Epithelial Cells/virology , Gene Expression Profiling/methods , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Sindbis Virus/genetics , Transcriptome , Uterine Cervical Neoplasms/virology , 5' Untranslated Regions , Binding Sites , Epithelial Cells/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Female , Gene Expression Regulation, Viral , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Protein Binding , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoproteins, Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/metabolism , SMN Complex Proteins , Sindbis Virus/growth & development , Sindbis Virus/metabolism , Sindbis Virus/pathogenicity , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Virus Replication
6.
Nano Lett ; 24(1): 89-96, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37939013

ABSTRACT

The ability to target specific tissues and to be internalized by cells is critical for successful nanoparticle-based targeted drug delivery. Here, we combined "stealthy" rod-shaped poly(2-oxazoline) (POx) nanoparticles of different lengths with a cancer marker targeting nanobody and a fluorescent cell internalization sensor via a heat-induced living crystallization-driven self-assembly (CDSA) strategy. A significant increase in association and uptake driven by nanobody-receptor interactions was observed alongside nanorod-length-dependent kinetics. Importantly, the incorporation of the internalization sensor allowed for quantitative differentiation between cell surface association and internalization of the targeted nanorods, revealing unprecedented length-dependent cellular interactions of CDSA nanorods. This study highlights the modularity and versatility of the heat-induced CDSA process and further demonstrates the potential of POx nanorods as a modular nanomedicine platform.


Subject(s)
Nanoparticles , Nanotubes , Drug Delivery Systems , Cell Membrane
7.
Stroke ; 55(1): 190-202, 2024 01.
Article in English | MEDLINE | ID: mdl-38134249

ABSTRACT

Drug development for ischemic stroke is challenging as evidenced by the paucity of therapeutics that have advanced beyond a phase III trial. There are many reasons for this lack of clinical translation including factors related to the experimental design of preclinical studies. Often overlooked in therapeutic development for ischemic stroke is the requirement of effective drug delivery to the brain, which is critical for neuroprotective efficacy of several small and large molecule drugs. Advancing central nervous system drug delivery technologies implies a need for detailed comprehension of the blood-brain barrier (BBB) and neurovascular unit. Such knowledge will permit the innate biology of the BBB/neurovascular unit to be leveraged for improved bench-to-bedside translation of novel stroke therapeutics. In this review, we will highlight key aspects of BBB/neurovascular unit pathophysiology and describe state-of-the-art approaches for optimization of central nervous system drug delivery (ie, passive diffusion, mechanical opening of the BBB, liposomes/nanoparticles, transcytosis, intranasal drug administration). Additionally, we will discuss how endogenous BBB transporters represent the next frontier of drug delivery strategies for stroke. Overall, this review will provide cutting edge perspective on how central nervous system drug delivery must be considered for the advancement of new stroke drugs toward human trials.


Subject(s)
Ischemic Stroke , Stroke , Humans , Drug Delivery Systems , Stroke/drug therapy , Central Nervous System Agents/pharmacology , Blood-Brain Barrier
8.
Clin Infect Dis ; 78(3): 775-784, 2024 03 20.
Article in English | MEDLINE | ID: mdl-37815489

ABSTRACT

BACKGROUND: Pneumonia is a common cause of morbidity and mortality, yet a causative pathogen is identified in a minority of cases. Plasma microbial cell-free DNA sequencing may improve diagnostic yield in immunocompromised patients with pneumonia. METHODS: In this prospective, multicenter, observational study of immunocompromised adults undergoing bronchoscopy to establish a pneumonia etiology, plasma microbial cell-free DNA sequencing was compared to standardized usual care testing. Pneumonia etiology was adjudicated by a blinded independent committee. The primary outcome, additive diagnostic value, was assessed in the Per Protocol population (patients with complete testing results and no major protocol deviations) and defined as the percent of patients with an etiology of pneumonia exclusively identified by plasma microbial cell-free DNA sequencing. Clinical additive diagnostic value was assessed in the Per Protocol subgroup with negative usual care testing. RESULTS: Of 257 patients, 173 met Per Protocol criteria. A pneumonia etiology was identified by usual care in 52/173 (30.1%), plasma microbial cell-free DNA sequencing in 49/173 (28.3%) and the combination of both in 73/173 (42.2%) patients. Plasma microbial cell-free DNA sequencing exclusively identified an etiology of pneumonia in 21/173 patients (additive diagnostic value 12.1%, 95% confidence interval [CI], 7.7% to 18.0%, P < .001). In the Per Protocol subgroup with negative usual care testing, plasma microbial cell-free DNA sequencing identified a pneumonia etiology in 21/121 patients (clinical additive diagnostic value 17.4%, 95% CI, 11.1% to 25.3%). CONCLUSIONS: Non-invasive plasma microbial cell-free DNA sequencing significantly increased diagnostic yield in immunocompromised patients with pneumonia undergoing bronchoscopy and extensive microbiologic and molecular testing. CLINICAL TRIALS REGISTRATION: NCT04047719.


Subject(s)
Pneumonia , Adult , Humans , Prospective Studies , Pneumonia/etiology , Sequence Analysis, DNA , Immunocompromised Host
9.
Am J Hum Genet ; 108(9): 1765-1779, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34450030

ABSTRACT

An important goal of clinical genomics is to be able to estimate the risk of adverse disease outcomes. Between 5% and 10% of individuals with ulcerative colitis (UC) require colectomy within 5 years of diagnosis, but polygenic risk scores (PRSs) utilizing findings from genome-wide association studies (GWASs) are unable to provide meaningful prediction of this adverse status. By contrast, in Crohn disease, gene expression profiling of GWAS-significant genes does provide some stratification of risk of progression to complicated disease in the form of a transcriptional risk score (TRS). Here, we demonstrate that a measured TRS based on bulk rectal gene expression in the PROTECT inception cohort study has a positive predictive value approaching 50% for colectomy. Single-cell profiling demonstrates that the genes are active in multiple diverse cell types from both the epithelial and immune compartments. Expression quantitative trait locus (QTL) analysis identifies genes with differential effects at baseline and week 52 follow-up, but for the most part, differential expression associated with colectomy risk is independent of local genetic regulation. Nevertheless, a predicted polygenic transcriptional risk score (PPTRS) derived by summation of transcriptome-wide association study (TWAS) effects identifies UC-affected individuals at 5-fold elevated risk of colectomy with data from the UK Biobank population cohort studies, independently replicated in an NIDDK-IBDGC dataset. Prediction of gene expression from relatively small transcriptome datasets can thus be used in conjunction with TWASs for stratification of risk of disease complications.


Subject(s)
Colectomy/statistics & numerical data , Colitis, Ulcerative/surgery , Crohn Disease/surgery , Quantitative Trait Loci , Transcriptome , Biological Specimen Banks , Cohort Studies , Colitis, Ulcerative/complications , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/genetics , Colon/metabolism , Colon/pathology , Colon/surgery , Crohn Disease/complications , Crohn Disease/diagnosis , Crohn Disease/genetics , Datasets as Topic , Disease Progression , Gene Expression Profiling , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Prognosis , Risk Assessment , United Kingdom
10.
J Pediatr ; 269: 113973, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38401785

ABSTRACT

OBJECTIVE: To test whether different clinical decision support tools increase clinician orders and patient completions relative to standard practice and each other. STUDY DESIGN: A pragmatic, patient-randomized clinical trial in the electronic health record was conducted between October 2019 and April 2020 at Geisinger Health System in Pennsylvania, with 4 arms: care gap-a passive listing recommending screening; alert-a panel promoting and enabling lipid screen orders; both; and a standard practice-no guideline-based notification-control arm. Data were analyzed for 13 346 9- to 11-year-old patients seen within Geisinger primary care, cardiology, urgent care, or nutrition clinics, or who had an endocrinology visit. Principal outcomes were lipid screening orders by clinicians and completions by patients within 1 week of orders. RESULTS: Active (care gap and/or alert) vs control arm patients were significantly more likely (P < .05) to have lipid screening tests ordered and completed, with ORs ranging from 1.67 (95% CI 1.28-2.19) to 5.73 (95% CI 4.46-7.36) for orders and 1.54 (95% CI 1.04-2.27) to 2.90 (95% CI 2.02-4.15) for completions. Alerts, with or without care gaps listed, outperformed care gaps alone on orders, with odds ratios ranging from 2.92 (95% CI 2.32-3.66) to 3.43 (95% CI 2.73-4.29). CONCLUSIONS: Electronic alerts can increase lipid screening orders and completions, suggesting clinical decision support can improve guideline-concordant screening. The study also highlights electronic record-based patient randomization as a way to determine relative effectiveness of support tools. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04118348.


Subject(s)
Decision Support Systems, Clinical , Mass Screening , Humans , Child , Male , Female , Mass Screening/methods , Lipids/blood , Electronic Health Records
11.
Ann Neurol ; 94(2): 271-284, 2023 08.
Article in English | MEDLINE | ID: mdl-37177857

ABSTRACT

OBJECTIVE: This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. METHODS: To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]). RESULTS: Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort. INTERPRETATION: These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , White Matter , Humans , Subthalamic Nucleus/physiology , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Deep Brain Stimulation/methods , Treatment Outcome
12.
J Cutan Pathol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38964771

ABSTRACT

Fibroblastic connective tissue nevus (FCTN) is a rare, benign dermal mesenchymal lesion of fibroblastic and myofibroblastic lineage. We report a case of a 2-year-old male who presented with an 18-month history of an erythematous, asymptomatic, unchanging dermal plaque on the right medial frontal scalp. A punch biopsy showed a disorderly, bland, dermal fibroblastic spindle cell proliferation extending to the superficial subcutis. It stained positive for CD34, and concern for dermatofibrosarcoma protuberans was raised. However, FISH was negative for PDGFB rearrangement, and the constellation of findings was most consistent with FCTN. This case underscores the importance of distinguishing CD34+ mesenchymal tumors for both dermatologists and dermatopathologists. As these represent a rather diverse group of lesions with different biological behaviors, a knowledge of the differential diagnosis of these entities is critical for proper patient management.

13.
Mol Cell Neurosci ; 126: 103878, 2023 09.
Article in English | MEDLINE | ID: mdl-37451414

ABSTRACT

Blast exposure, commonly experienced by military personnel, can cause devastating life-threatening polysystem trauma. Despite considerable research efforts, the impact of the systemic inflammatory response after major trauma on secondary brain injury-inflammation is largely unknown. The aim of this study was to identify markers underlying the susceptibility and early onset of neuroinflammation in three rat trauma models: (1) blast overpressure exposure (BOP), (2) complex extremity trauma (CET) involving femur fracture, crush injury, tourniquet-induced ischemia, and transfemoral amputation through the fracture site, and (3) BOP+CET. Six hours post-injury, intact brains were harvested and dissected to obtain biopsies from the prefrontal cortex, striatum, neocortex, hippocampus, amygdala, thalamus, hypothalamus, and cerebellum. Custom low-density microarray datasets were used to identify, interpret and visualize genes significant (p < 0.05 for differential expression [DEGs]; 86 neuroinflammation-associated) using a custom python-based computer program, principal component analysis, heatmaps and volcano plots. Gene set and pathway enrichment analyses of the DEGs was performed using R and STRING for protein-protein interaction (PPI) to identify and explore key genes and signaling networks. Transcript profiles were similar across all regions in naïve brains with similar expression levels involving neurotransmission and transcription functions and undetectable to low-levels of inflammation-related mediators. Trauma-induced neuroinflammation across all anatomical brain regions correlated with injury severity (BOP+CET > CET > BOP). The most pronounced differences in neuroinflammatory-neurodegenerative gene regulation were between blast-associated trauma (BOP, BOP+CET) and CET. Following BOP, there were few DEGs detected amongst all 8 brain regions, most were related to cytokines/chemokines and chemokine receptors, where PPI analysis revealed Il1b as a potential central hub gene. In contrast, CET led to a more excessive and diverse pro-neuroinflammatory reaction in which Il6 was identified as the central hub gene. Analysis of the of the BOP+CET dataset, revealed a more global heightened response (Cxcr2, Il1b, and Il6) as well as the expression of additional functional regulatory networks/hub genes (Ccl2, Ccl3, and Ccl4) which are known to play a critical role in the rapid recruitment and activation of immune cells via chemokine/cytokine signaling. These findings provide a foundation for discerning pathophysiological consequences of acute extremity injury and systemic inflammation following various forms of trauma in the brain.


Subject(s)
Blast Injuries , Brain Injuries , Neocortex , Rats , Animals , Neuroinflammatory Diseases , Interleukin-6/metabolism , Inflammation , Cytokines/metabolism , Blast Injuries/complications , Blast Injuries/pathology , Neocortex/metabolism , Extremities/pathology
14.
Plant Dis ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840488

ABSTRACT

Triticum mosaic virus (TriMV, genus Poacevirus, family Potyviridae) was first reported in 2006 (Seifers et al. 2008) to infect wheat, and since then, it has been established as a constraint for US wheat production (Byamukama et al. 2013). In the field, TriMV often exists as a coinfection with wheat streak mosaic virus (WSMV), and these two viruses interact synergistically to produce severe symptoms and greater yield loss (Byamukama et al. 2012; Tatineni et al. 2022). Both TriMV and WSMV are transmitted by wheat curl mites (Aceria tosichella Keifer) (McMechan et al. 2014). Wheat is the primary host reported for TriMV in the field, but Seifers et al. (2010) established oat, rye, barley, and several other cereals and grasses as hosts under controlled conditions. However, there are no documented cases of TriMV infecting oats in the field. Between 10-25 June, 2023, a total of 273 field oat plants showing foliar yellowing, yellow flecking, and streaking symptoms were collected from four different fields in Nebraska (Big Springs: 41.1029° N, 102.1451° W; Mead: 41.2292° N, 96.4938° W; Odell: 40.0459° N, 96.7984° W; Stumf: 40.5048° N, 101.4223° W). Total RNA was extracted using the MagMax Plant RNA Isolation kit (Thermo Fisher Scientific) and the KingFisher Flex Magnetic Particle Processor (Thermo Fisher Scientific) (Mondal et al. 2023). Sample RNA was assayed with a single-step multiplex reverse transcription polymerase chain reaction (RT-PCR) to determine presence of WSMV and TriMV. Out of 273 symptomatic oat plants, 254 (93.04%) tested positive for at least one virus. Out of total positive samples, 238 were positive for WSMV (93.70 %), 12 plants tested positive for both TriMV and WSMV (4.70%), and 4 plants were infected with TriMV alone (1.60%). As a secondary confirmation, amplified fragments from the TriMV single infection were gel purified using a gel extraction kit (QIAquick) and sequenced (Eurofins Genomics). The nucleotide sequences were analysed using the BlastN program, compiled, and edited in the BioEdit software (Hall 1999). Sequences were deposited in the NCBI GenBank database (accession number PP475806). Nucleotide BLAST searches of the target coat protein (CP) gene showed > 98% identity to the corresponding sequences in TriMV accession MK318274. For further validation, virus inoculum was prepared by grinding field-collected plant material from plants with only TriMV present in 20 mM sodium phosphate buffer, pH 7.0, and then mechanically inoculating two-week-old oats (cv. Shaw n=8) and wheat (cv. Sattler, n=8) plants. Three weeks post-inoculation, all the eight wheat plants exhibited mild yellowing and streaking symptoms, while oat plants did not show obvious foliar symptoms. All wheat and oat plants were further tested positive with DAC-ELISA (antibodies produced against TriMV CP at the USDA-ARS facility in Lincoln, NE) and with RT-PCR. The specific attribution of these symptoms to TriMV in oats is not possible as none produced prominent symptoms. Asymptomatic oat infection from symptomatic field-collected oat samples could be due to oat cultivar differences. Although the prevalence of TriMV in wheat has been established across the Great Plains of the United States, to our knowledge, this is the first report of TriMV infection in US oat fields. Our finding warrant further investigation into the incidence and impact of the virus in oat crop and its potential for serving as a asymptomatic virus reservoir.

15.
Angew Chem Int Ed Engl ; 63(9): e202309958, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-37943171

ABSTRACT

Therapeutic peptides are a major class of pharmaceutical drugs owing to their target-binding specificity as well as their versatility in inhibiting aberrant protein-protein interactions associated with human pathologies. Within the realm of amyloid diseases, the use of peptides and peptidomimetics tailor-designed to overcome amyloidogenesis has been an active research endeavor since the late 90s. In more recent years, incorporating nanoparticles for enhancing the biocirculation and delivery of peptide drugs has emerged as a frontier in nanomedicine, and nanoparticles have further demonstrated a potency against amyloid aggregation and cellular inflammation to rival strategies employing small molecules, peptides, and antibodies. Despite these efforts, however, a fundamental understanding of the chemistry, characteristics and function of peptido-nanocomposites is lacking, and a systematic analysis of such strategy for combating a range of amyloid pathogeneses is missing. Here we review the history, principles and evolving chemistry of constructing peptido-nanocomposites from bottom up and discuss their future application against amyloid diseases that debilitate a significant portion of the global population.


Subject(s)
Amyloidosis , Nanocomposites , Humans , Amyloidosis/drug therapy , Amyloid/chemistry , Peptides/chemistry , Amyloidogenic Proteins/chemistry , Amyloid beta-Peptides/chemistry
16.
Angew Chem Int Ed Engl ; 63(3): e202315552, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38038248

ABSTRACT

Droplet-based microfluidics represents a disruptive technology in the field of chemistry and biology through the generation and manipulation of sub-microlitre droplets. To avoid droplet coalescence, fluoropolymer-based surfactants are commonly used to reduce the interfacial tension between two immiscible phases to stabilize droplet interfaces. However, the conventional preparation of fluorosurfactants involves multiple steps of conjugation reactions between fluorinated and hydrophilic segments to form multiple-block copolymers. In addition, synthesis of customized surfactants with tailored properties is challenging due to the complex synthesis process. Here, we report a highly efficient synthetic method that utilizes living radical polymerization (LRP) to produce fluorosurfactants with tailored functionalities. Compared to the commercialized surfactant, our surfactants outperform in thermal cycling for polymerase chain reaction (PCR) testing, and exhibit exceptional biocompatibility for cell and yeast culturing in a double-emulsion system. This breakthrough synthetic approach has the potential to revolutionize the field of droplet-based microfluidics by enabling the development of novel designs that generate droplets with superior stability and functionality for a wide range of applications.


Subject(s)
Microfluidics , Surface-Active Agents , Microfluidics/methods , Polymerization , Surface-Active Agents/chemistry , Emulsions , Fluorocarbon Polymers
17.
Lancet Oncol ; 24(4): 335-346, 2023 04.
Article in English | MEDLINE | ID: mdl-36898391

ABSTRACT

BACKGROUND: COVID-19 sequelae can affect about 15% of patients with cancer who survive the acute phase of SARS-CoV-2 infection and can substantially impair their survival and continuity of oncological care. We aimed to investigate whether previous immunisation affects long-term sequelae in the context of evolving variants of concern of SARS-CoV-2. METHODS: OnCovid is an active registry that includes patients aged 18 years or older from 37 institutions across Belgium, France, Germany, Italy, Spain, and the UK with a laboratory-confirmed diagnosis of COVID-19 and a history of solid or haematological malignancy, either active or in remission, followed up from COVID-19 diagnosis until death. We evaluated the prevalence of COVID-19 sequelae in patients who survived COVID-19 and underwent a formal clinical reassessment, categorising infection according to the date of diagnosis as the omicron (B.1.1.529) phase from Dec 15, 2021, to Jan 31, 2022; the alpha (B.1.1.7)-delta (B.1.617.2) phase from Dec 1, 2020, to Dec 14, 2021; and the pre-vaccination phase from Feb 27 to Nov 30, 2020. The prevalence of overall COVID-19 sequelae was compared according to SARS-CoV-2 immunisation status and in relation to post-COVID-19 survival and resumption of systemic anticancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974. FINDINGS: At the follow-up update on June 20, 2022, 1909 eligible patients, evaluated after a median of 39 days (IQR 24-68) from COVID-19 diagnosis, were included (964 [50·7%] of 1902 patients with sex data were female and 938 [49·3%] were male). Overall, 317 (16·6%; 95% CI 14·8-18·5) of 1909 patients had at least one sequela from COVID-19 at the first oncological reassessment. The prevalence of COVID-19 sequelae was highest in the pre-vaccination phase (191 [19·1%; 95% CI 16·4-22·0] of 1000 patients). The prevalence was similar in the alpha-delta phase (110 [16·8%; 13·8-20·3] of 653 patients, p=0·24), but significantly lower in the omicron phase (16 [6·2%; 3·5-10·2] of 256 patients, p<0·0001). In the alpha-delta phase, 84 (18·3%; 95% CI 14·6-22·7) of 458 unvaccinated patients and three (9·4%; 1·9-27·3) of 32 unvaccinated patients in the omicron phase had sequelae. Patients who received a booster and those who received two vaccine doses had a significantly lower prevalence of overall COVID-19 sequelae than unvaccinated or partially vaccinated patients (ten [7·4%; 95% CI 3·5-13·5] of 136 boosted patients, 18 [9·8%; 5·8-15·5] of 183 patients who had two vaccine doses vs 277 [18·5%; 16·5-20·9] of 1489 unvaccinated patients, p=0·0001), respiratory sequelae (six [4·4%; 1·6-9·6], 11 [6·0%; 3·0-10·7] vs 148 [9·9%; 8·4-11·6], p=0·030), and prolonged fatigue (three [2·2%; 0·1-6·4], ten [5·4%; 2·6-10·0] vs 115 [7·7%; 6·3-9·3], p=0·037). INTERPRETATION: Unvaccinated patients with cancer remain highly vulnerable to COVID-19 sequelae irrespective of viral strain. This study confirms the role of previous SARS-CoV-2 immunisation as an effective measure to protect patients from COVID-19 sequelae, disruption of therapy, and ensuing mortality. FUNDING: UK National Institute for Health and Care Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust.


Subject(s)
COVID-19 , Neoplasms , Humans , Female , Male , SARS-CoV-2 , COVID-19/complications , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Neoplasms/epidemiology , Neoplasms/therapy , Disease Progression
18.
Stroke ; 54(11): 2875-2885, 2023 11.
Article in English | MEDLINE | ID: mdl-37750296

ABSTRACT

BACKGROUND: Drug discovery for stroke is challenging as indicated by poor clinical translatability. In contrast, HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors (ie, statins) improve poststroke neurological outcomes. This property requires transport across the blood-brain barrier via an endogenous uptake transporter (ie, Oatp1a4 [organic anion transporting polypeptide 1a4]). Our goal was to study Oatp1a4 as a drug delivery mechanism because the blood-brain barrier cannot be assumed to be completely open for all drugs in ischemic stroke. METHODS: Male Sprague-Dawley rats (200-250 g) were subjected to middle cerebral artery occlusion (90 minutes) followed by reperfusion for up to 7 days. Atorvastatin (20 mg/kg, IV) was administered 2 hours following intraluminal suture removal. Involvement of Oatp-mediated transport was determined using fexofenadine (3.2 mg/kg, IV), a competitive Oatp inhibitor. Oatp1a4 transport activity was measured by in situ brain perfusion. Infarction volumes/brain edema ratios and neuronal nuclei expression were determined using 2,3,5-triphenyltetrazolium chloride-stained brain tissue slices and confocal microscopy, respectively. Poststroke functional outcomes were assessed via neurological deficit scores and rotarod analysis. RESULTS: At 2-hour post-middle cerebral artery occlusion, [3H]atorvastatin uptake was increased in ischemic brain tissue. A single dose of atorvastatin significantly reduced post-middle cerebral artery occlusion infarction volume, decreased brain edema ratio, increased caudoputamen neuronal nuclei expression, and improved functional neurological outcomes. All middle cerebral artery occlusion positive effects of atorvastatin were attenuated by fexofenadine coadministration (ie, an Oatp transport inhibitor). CONCLUSIONS: Our data demonstrate that neuroprotective effects of atorvastatin may require central nervous system delivery by Oatp-mediated transport at the blood-brain barrier, a mechanism that persists despite increased cerebrovascular permeability in ischemic stroke. These novel and translational findings support utility of blood-brain barrier transporters in drug delivery for neuroprotective agents.


Subject(s)
Brain Edema , Ischemic Stroke , Neuroprotective Agents , Organic Anion Transporters , Stroke , Rats , Animals , Male , Atorvastatin/pharmacology , Rats, Sprague-Dawley , Neuroprotection , Infarction, Middle Cerebral Artery/drug therapy , Stroke/drug therapy , Neuroprotective Agents/pharmacology , Organic Anion Transporters/metabolism
19.
Coord Chem Rev ; 4872023 Jul 15.
Article in English | MEDLINE | ID: mdl-37305445

ABSTRACT

Brain pathologies are considered one of the greatest contributors of death and disability worldwide. Neurodegenerative Alzheimer's disease is the second leading cause of death in adults, whilst brain cancers including glioblastoma multiforme in adults, and pediatric-type high-grade gliomas in children remain largely untreatable. A further compounding issue for patients with brain pathologies is that of long-term neuropsychiatric sequela - as a symptom or arising from high dose therapeutic intervention. The major challenge to effective, low dose treatment is finding therapeutics that successfully cross the blood-brain barrier and target aberrant cellular processes, while having minimum effect on essential cellular processes, and healthy bystander cells. Following over 30 years of research, CRISPR technology has emerged as a biomedical tour de force with the potential to revolutionise the treatment of both neurological and cancer related brain pathologies. The aim of this review is to take stock of the progress made in CRISPR technology in relation to treating brain pathologies. Specifically, we will describe studies which look beyond design, synthesis, and theoretical application; and focus instead on in vivo studies with translation potential. Along with discussing the latest breakthrough techniques being applied within the CRISPR field, we aim to provide a prospective on the knowledge gaps that exist and challenges that still lay ahead for CRISPR technology prior to successful application in the brain disease treatment field.

20.
J Clin Microbiol ; 61(6): e0017423, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37162363

ABSTRACT

We present the first performance evaluation results for omadacycline on the VITEK 2 and VITEK 2 Compact Systems (bioMérieux, Inc.). The trial was conducted at four external sites and one internal site. All sites were in the United States, geographically dispersed as follows: Indianapolis, IN; Schaumburg, IL; Wilsonville, OR; Cleveland, OH; and Hazelwood, MO. In this multisite study, omadacycline was tested against 858 Enterobacterales on the VITEK 2 antimicrobial susceptibility test (AST) Gram-negative (GN) card, and the results were compared to the Clinical and Laboratory Standards Institute broth microdilution (BMD) reference method. The results were analyzed and are presented as essential agreement (EA), category agreement (CA), minor error (mE) rates, major error (ME) rates, and very major error (VME) rates following the US Food and Drug Administration (FDA) and International Standards Organization (ISO) performance criteria requirements. Omadacycline has susceptibility testing interpretive criteria (breakpoints) established by the FDA only; nevertheless, the analysis was also performed using the ISO acceptance criteria to satisfy the registration needs of countries outside the United States. The analysis following FDA criteria (including only Klebsiella pneumoniae and Enterobacter cloacae) showed the following performance: EA = 97.9% (410/419), CA = 94.3% (395/419), VME = 2% (1/51), with no ME present. The performance following ISO criteria (including all Enterobacterales tested) after error resolutions was EA = 98.1% (842/858) and CA = 96.9% (831/858). No ME or VME were observed. The VITEK 2 test met the ISO and FDA criteria of ≥ 95% reproducibility, and ≥ 95% quality control (QC) results within acceptable ranges for QC organisms. In June 2022, the omadacycline VITEK 2 test received FDA 510(k) clearance (K213931) FDA as a diagnostic device to be used in the treatment of acute bacterial skin and skin-structure infections caused by E. cloacae and K. pneumoniae, and for treatment of community-acquired bacterial pneumonia caused by K. pneumoniae. The new VITEK 2 AST-GN omadacycline test provides an alternative to the BMD reference method testing and increases the range of automated diagnostic tools available for determining omadacycline MICs in Enterobacterales.


Subject(s)
Anti-Bacterial Agents , Tetracyclines , Humans , Anti-Bacterial Agents/pharmacology , Reproducibility of Results , Microbial Sensitivity Tests , Tetracyclines/pharmacology , Klebsiella pneumoniae
SELECTION OF CITATIONS
SEARCH DETAIL