Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cancer ; 129(18): 2836-2847, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37254878

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) play a critical role in intercellular communication under physiological and pathological conditions, including cancer. EVs cargo reflects their cell of origin, suggesting their utility as biomarkers. EVs are detected in several biofluids, and their ability to cross the blood-brain barrier has highlighted their potential as prognostic and diagnostic biomarkers in gliomas, including glioblastoma (GBM). Studies have demonstrated the potential clinical utility of plasma-derived EVs in glioma. However, little is known about the clinical utility of saliva-derived EVs in GBM. METHODS: Small EVs were isolated from whole mouth saliva of GBM patients pre- and postoperatively. Isolation was performed using differential centrifugation and/or ultracentrifugation. EVs were characterized by concentration, size, morphology, and EVs cell-surface protein markers. Protein cargo in EVs was profiled using mass spectrometry. RESULTS: There were no statistically significant differences in size and concentration of EVs derived from pre- and post GBM patients' saliva samples. A higher number of proteins were detected in preoperative samples compared to postoperative samples. The authors found four highly abundant proteins (aldolase A, 14-3-3 protein ε, enoyl CoA hydratase 1, and transmembrane protease serine 11B) in preoperative saliva samples from GBM patients with poor outcomes. Functional enrichment analysis of pre- and postoperative saliva samples showed significant enrichment of several pathways, including those related to the immune system, cell cycle and programmed cell death. CONCLUSIONS: This study, for the first time, demonstrates the feasibility of isolating and characterizing small EVs from pre- and postoperative saliva samples from GBM patients. Preliminary findings encourage further large cohort validation studies on salivary small EVs to evaluate prognosis in GBM.


Subject(s)
Extracellular Vesicles , Glioblastoma , Glioma , Humans , Glioblastoma/pathology , Proteome/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Glioma/pathology , Biomarkers/metabolism
2.
Biomacromolecules ; 24(6): 2674-2690, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37143361

ABSTRACT

This study aimed to develop a multifunctional polymer platform that could address the issue of treatment resistance when using conventional chemotherapeutics to treat glioblastoma (GBM). An antibody-conjugated, multi-drug loaded hyperbranched polymer was developed that provided a platform to evaluate the role of targeted nanomedicine treatments in overcoming resistant GBM by addressing the various complications with current clinically administered formulations. The polymer was synthesized via reversible addition fragmentation chain transfer polymerization and included the clinical first-line alkylating agent temozolomide (TMZ) which was incorporated as a polymerizable monomer, poly (ethylene glycol) (PEG) units to impart biocompatibility and enable conjugation with αPEG-αEphA2 bispecific antibody (αEphA2 BsAb) for tumor targeting, and hydrazide moieties for attachment of a secondary drug which allows exploration of synergistic therapies. To overcome the resistance to TMZ, the O6 alkylguanine DNA alkyltransferase (AGT, DNA repair protein) inhibitor, dialdehyde O6 benzylguanine (DABG) was subsequently conjugated to the polymer via an acid labile hydrazone linker to facilitate controlled release under conditions encountered within the tumor microenvironment. The prolonged degradation half-life (4-5 h) of the polymer conjugated TMZ in vitro offered a potential avenue to overcome the inability to deliver these drugs in combination at therapeutic doses. Although only 20% of DABG could be released within the studied timeframe (192 h) under conditions mimicking the acidic nature of the tumor environment, cytotoxicity evaluation using cell assays confirmed the improved therapeutic efficacy toward resistant GBM cells after attaching DABG to the polymer delivery vehicle. Of note, when the polymeric delivery vehicle was specifically targeted to receptors (Ephrin A2) on the surface of the GBM cells using our in-house developed EphA2 specific BsAb, the dual-drug-loaded polymer exhibited an improved therapeutic effect on TMZ-resistant cells compared to the free drug combination. Both in vitro and in vivo targeting studies showed high uptake of the construct to GBM tumors with an upregulated EphA2 receptor (T98G and U251) compared to a tumor that had low expression (U87MG), where a dual tumor xenograft model was used to demonstrate the enhanced accumulation in tumor tissue in vivo. Despite the synthetic challenges of developing systems to effectively deliver controlled doses of TMZ and DABG, these studies highlight the potential benefit of this formulation for delivering multi-drug combinations to resistant GBM tumor cells and offer a platform for future optimization in therapeutic studies.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Pharmaceutical Preparations , Precision Medicine , Neoplasm Recurrence, Local/drug therapy , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Brain Neoplasms/drug therapy , Polymers/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Xenograft Model Antitumor Assays , Tumor Microenvironment
3.
Curr Oncol Rep ; 25(6): 589-598, 2023 06.
Article in English | MEDLINE | ID: mdl-36976462

ABSTRACT

PURPOSE OF REVIEW: This review identifies challenges and barriers to successful development of drugs in neuro-oncology trials at the preclinical, clinical and translational stages that we believe has contributed to poor outcomes for patients over the last 30 years. RECENT FINDINGS: Several key strategies have been proposed by leading groups to address these and improve patient outcomes. Better preclinical testing using more sophisticated and clinically relevant models is needed. A greater focus on assessing blood-brain barrier penetrance and targeting key biological processes such as tumour heterogeneity and immune response is vital. Adopting innovative trial designs permitting faster results and addressing key issues (including molecular heterogeneity and combinatorial approaches) is highly desirable. A stronger translational focus is also clearly needed. Implementation of these strategies is already starting to occur. Maintaining and increasing these novel approaches will require coordinated efforts between clinicians, scientists, industry and funding/regulator bodies.


Subject(s)
Brain Neoplasms , Humans , Brain Neoplasms/therapy , Clinical Trials as Topic
4.
J Nanobiotechnology ; 19(1): 60, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33637089

ABSTRACT

BACKGROUND: Approximately 80% of brain tumours are gliomas. Despite treatment, patient mortality remains high due to local metastasis and relapse. It has been shown that transferrin-functionalised porous silicon nanoparticles (Tf@pSiNPs) can inhibit the migration of U87 glioma cells. However, the underlying mechanisms and the effect of glioma cell heterogeneity, which is a hallmark of the disease, on the efficacy of Tf@pSiNPs remains to be addressed. RESULTS: Here, we observed that Tf@pSiNPs inhibited heterogeneous patient-derived glioma cells' (WK1) migration across small perforations (3 µm) by approximately 30%. A phenotypical characterisation of the migrated subpopulations revealed that the majority of them were nestin and fibroblast growth factor receptor 1 positive, an indication of their cancer stem cell origin. The treatment did not inhibit cell migration across large perforations (8 µm), nor cytoskeleton formation. This is in agreement with our previous observations that cellular-volume regulation is a mediator of Tf@pSiNPs' cell migration inhibition. Since aquaporin 9 (AQP9) is closely linked to cellular-volume regulation, and is highly expressed in glioma, the effect of AQP9 expression on WK1 migration was investigated. We showed that WK1 migration is correlated to the differential expression patterns of AQP9. However, AQP9-silencing did not affect WK1 cell migration across perforations, nor the efficacy of cell migration inhibition mediated by Tf@pSiNPs, suggesting that AQP9 is not a mediator of the inhibition. CONCLUSION: This in vitro investigation highlights the unique therapeutic potentials of Tf@pSiNPs against glioma cell migration and indicates further optimisations that are required to maximise its therapeutic efficacies.


Subject(s)
Glioma/drug therapy , Nanoparticles/therapeutic use , Porosity , Silicon/pharmacology , Aquaporins/genetics , Brain Neoplasms , Cell Line, Tumor , Cell Movement , Glioblastoma/drug therapy , Humans , Neoplastic Stem Cells , Receptor, Fibroblast Growth Factor, Type 1
5.
BMC Biol ; 18(1): 45, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32354330

ABSTRACT

BACKGROUND: The traditional concept that heritability occurs exclusively from the transfer of germline-restricted genetics is being challenged by the increasing accumulation of evidence confirming the existence of experience-dependent transgenerational inheritance. However, questions remain unanswered as to how heritable information can be passed from somatic cells. Previous studies have implicated the critical involvement of RNA in heritable transgenerational effects, and the high degree of mobility and genomic impact of RNAs in all organisms is an attractive model for the efficient transfer of genetic information. RESULTS: We hypothesized that RNA may be transported from a somatic tissue, in this case the brain, of an adult male mouse to the germline, and subsequently to embryos. To investigate this, we injected one hemisphere of the male mouse striatum with an AAV1/9 virus expressing human pre-MIR941 (MIR941). After 2, 8 and 16 weeks following injection, we used an LNA-based qPCR system to detect the presence of virus and human MIR941 in brain, peripheral tissues and embryos, from injected male mice mated with uninjected females. Virus was never detected outside of the brain. Verification of single bands of the correct size for MIR941 was performed using Sanger sequencing while quantitation demonstrated that a small percentage (~ 1-8%) of MIR941 is transported to the germline and to embryos in about a third of the cases. CONCLUSIONS: We show that somatic RNA can be transported to the germline and passed on to embryos, thereby providing additional evidence of a role for RNA in somatic cell-derived intergenerational effects.


Subject(s)
Brain/physiology , Epigenesis, Genetic , Germ Cells/metabolism , Inheritance Patterns , MicroRNAs/metabolism , RNA Transport , Animals , Heredity , Male , Mice , Mice, Inbred C57BL , MicroRNAs/administration & dosage
6.
Int J Mol Sci ; 22(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924599

ABSTRACT

Glioblastoma display vast cellular heterogeneity, with glioblastoma stem cells (GSCs) at the apex. The critical role of GSCs in tumour growth and resistance to therapy highlights the need to delineate mechanisms that control stemness and differentiation potential of GSC. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) regulates neural progenitor cell differentiation, but its role in cancer stem cell differentiation is largely unknown. Herein, we demonstrate that DYRK1A kinase is crucial for the differentiation commitment of glioblastoma stem cells. DYRK1A inhibition insulates the self-renewing population of GSCs from potent differentiation-inducing signals. Mechanistically, we show that DYRK1A promotes differentiation and limits stemness acquisition via deactivation of CDK5, an unconventional kinase recently described as an oncogene. DYRK1A-dependent inactivation of CDK5 results in decreased expression of the stemness gene SOX2 and promotes the commitment of GSC to differentiate. Our investigations of the novel DYRK1A-CDK5-SOX2 pathway provide further insights into the mechanisms underlying glioblastoma stem cell maintenance.


Subject(s)
Cell Self Renewal , Cyclin-Dependent Kinase 5/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , SOXB1 Transcription Factors/metabolism , Bone Morphogenetic Protein 4/pharmacology , Cell Differentiation/drug effects , Cell Self Renewal/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Humans , Signal Transduction/drug effects , Dyrk Kinases
7.
Int J Mol Sci ; 22(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919246

ABSTRACT

Glioblastoma is one of the most common and lethal types of primary brain tumor. Despite aggressive treatment with chemotherapy and radiotherapy, tumor recurrence within 6-9 months is common. To overcome this, more effective therapies targeting cancer cell stemness, invasion, metabolism, cell death resistance and the interactions of tumor cells with their surrounding microenvironment are required. In this study, we performed a systematic review of the molecular mechanisms that drive glioblastoma progression, which led to the identification of 65 drugs/inhibitors that we screened for their efficacy to kill patient-derived glioma stem cells in two dimensional (2D) cultures and patient-derived three dimensional (3D) glioblastoma explant organoids (GBOs). From the screening, we found a group of drugs that presented different selectivity on different patient-derived in vitro models. Moreover, we found that Costunolide, a TERT inhibitor, was effective in reducing the cell viability in vitro of both primary tumor models as well as tumor models pre-treated with chemotherapy and radiotherapy. These results present a novel workflow for screening a relatively large groups of drugs, whose results could lead to the identification of more personalized and effective treatment for recurrent glioblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Drug Evaluation, Preclinical , Glioblastoma/drug therapy , Organoids , Antineoplastic Agents/therapeutic use , Brain Neoplasms/physiopathology , Cells, Cultured , Glioblastoma/physiopathology , Humans , Precision Medicine , Tumor Microenvironment
8.
Br J Cancer ; 122(3): 295-305, 2020 02.
Article in English | MEDLINE | ID: mdl-31666668

ABSTRACT

Gliomas are the most common tumours of the central nervous system and the most aggressive form is glioblastoma (GBM). Despite advances in treatment, patient survival remains low. GBM diagnosis typically relies on imaging techniques and postoperative pathological diagnosis; however, both procedures have their inherent limitations. Imaging modalities cannot differentiate tumour progression from treatment-related changes that mimic progression, known as pseudoprogression, which might lead to misinterpretation of therapy response and delay clinical interventions. In addition to imaging limitations, tissue biopsies are invasive and most of the time cannot be performed over the course of treatment to evaluate 'real-time' tumour dynamics. In an attempt to address these limitations, liquid biopsies have been proposed in the field. Blood sampling is a minimally invasive procedure for a patient to endure and could provide tumoural information to guide therapy. Tumours shed tumoural content, such as circulating tumour cells, cell-free nucleic acids, proteins and extracellular vesicles, into the circulation, and these biomarkers are reported to cross the blood-brain barrier. The use of liquid biopsies is emerging in the field of GBM. In this review, we aim to summarise the current literature on circulating biomarkers, namely circulating tumour cells, circulating tumour DNA and extracellular vesicles as potential non-invasively sampled biomarkers to manage the treatment of patients with GBM.


Subject(s)
Brain Neoplasms/metabolism , Circulating Tumor DNA/metabolism , Extracellular Vesicles/metabolism , Glioblastoma/metabolism , Neoplastic Cells, Circulating/metabolism , Biomarkers, Tumor/metabolism , Blood-Brain Barrier/metabolism , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Cell-Free Nucleic Acids/metabolism , Disease Progression , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Liquid Biopsy , Neoplasm Metastasis , Neoplasm Proteins/metabolism , RNA, Neoplasm/metabolism , Treatment Outcome
9.
J Neurooncol ; 146(1): 41-53, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31760595

ABSTRACT

INTRODUCTION: Malignant astrocytomas are composed of heterogeneous cell populations. Compared to grade IV glioblastoma, low-grade astrocytomas have more differentiated cells and are associated with a better prognosis. Therefore, inducing cellular differentiation to alter the behaviour of high-grade astrocytomas may serve as a therapeutic strategy. The nuclear factor one (NFI) transcription factors are essential for normal astrocytic differentiation. Here, we investigate whether family members NFIA and NFIB act as effectors of cellular differentiation in glioblastoma. METHODS: We analysed expression of NFIA and NFIB in mRNA expression data of high-grade astrocytoma and with immunofluorescence co-staining. Furthermore, we induced NFI expression in patient-derived subcutaneous glioblastoma xenografts via in vivo electroporation. RESULTS: The expression of NFIA and NFIB is reduced in glioblastoma as compared to lower grade astrocytomas. At a cellular level, their expression is associated with differentiated and mature astrocyte-like tumour cells. In vivo analyses consistently demonstrate that expression of either NFIA or NFIB is sufficient to promote tumour cell differentiation in glioblastoma xenografts. CONCLUSION: Our findings indicate that both NFIA and NFIB may have an endogenous pro-differentiative function in astrocytomas, similar to their role in normal astrocyte differentiation. Overall, our study establishes a basis for further investigation of targeting NFI-mediated differentiation as a potential differentiation therapy.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Differentiation , Glioblastoma/pathology , NFI Transcription Factors/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID , NFI Transcription Factors/genetics , Neoplasm Grading , Neurogenesis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Acta Neuropathol ; 138(6): 1033-1052, 2019 12.
Article in English | MEDLINE | ID: mdl-31463571

ABSTRACT

Glioblastomas (GBMs) are malignant central nervous system (CNS) neoplasms with a very poor prognosis. They display cellular hierarchies containing self-renewing tumourigenic glioma stem cells (GSCs) in a complex heterogeneous microenvironment. One proposed GSC niche is the extracellular matrix (ECM)-rich perivascular bed of the tumour. Here, we report that the ECM binding dystroglycan (DG) receptor is expressed and functionally glycosylated on GSCs residing in the perivascular niche. Glycosylated αDG is highly expressed and functional on the most aggressive mesenchymal-like (MES-like) GBM tumour compartment. Furthermore, we found that DG acts to maintain an MES-like state via tight control of MAPK activation. Antibody-based blockade of αDG induces robust ERK-mediated differentiation leading to reduced GSC potential. DG was shown to be required for tumour initiation in MES-like GBM, with constitutive loss significantly delaying or preventing tumourigenic potential in-vivo. These findings reveal a central role of the DG receptor, not only as a structural element, but also as a critical factor promoting MES-like GBM and the maintenance of GSCs residing in the perivascular niche.


Subject(s)
Brain Neoplasms/metabolism , Dystroglycans/metabolism , Glioma/metabolism , Neoplastic Stem Cells/metabolism , Tumor Microenvironment/physiology , Animals , Brain Neoplasms/blood supply , Brain Neoplasms/surgery , Cell Transformation, Neoplastic , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Glioma/blood supply , Glioma/surgery , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation
11.
Pharmacol Res ; 134: 166-178, 2018 08.
Article in English | MEDLINE | ID: mdl-29944980

ABSTRACT

In the field of kinase inhibitors for applications in cancer research, tubulin is emerging as a targeted cellular protein that can significantly contribute to their activities. However, investigation of kinase inhibitors beyond the kinome is an area often neglected. Herein, we describe the results of pharmacological studies using drugs targeting kinases, tubulin or both. A key finding is that if cells are treated with a kinase inhibitor unintentionally targeting tubulin, their characteristic shape will diminish within a short timeframe. These changes in cell morphology are not seen when cells are treated with bona fide kinase inhibitors that do not directly target tubulin. Thus, early changes in cell morphology upon treatments are a strong indication that the inhibitor is directly targeting tubulin. Recognizing tubulin as a target of kinase inhibitors will build confidence in the future mechanistic studies using kinase inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Shape/drug effects , Microtubules/drug effects , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Microtubules/metabolism , Microtubules/pathology , Neoplasms/enzymology , Neoplasms/pathology , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Time Factors
12.
Cancer Immunol Immunother ; 66(9): 1217-1228, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28501939

ABSTRACT

We have reported that calcitonin receptor (CTR) is widely expressed in biopsies from the lethal brain tumour glioblastoma by malignant glioma and brain tumour-initiating cells (glioma stem cells) using anti-human CTR antibodies. A monoclonal antibody against an epitope within the extracellular domain of CTR was raised (mAb2C4) and chemically conjugated to either plant ribosome-inactivating proteins (RIPs) dianthin-30 or gelonin, or the drug monomethyl auristatin E (MMAE), and purified. In the high-grade glioma cell line (HGG, representing glioma stem cells) SB2b, in the presence of the triterpene glycoside SO1861, the EC50 for mAb2C4:dianthin was 10.0 pM and for mAb2C4:MMAE [antibody drug conjugate (ADC)] 2.5 nM, 250-fold less potent. With the cell line U87MG, in the presence of SO1861, the EC50 for mAb2C4:dianthin was 20 pM, mAb2C4:gelonin, 20 pM, compared to the ADC (6.3 nM), which is >300 less potent. Several other HGG cell lines that express CTR were tested and the efficacies of mAb2C4:RIP (dianthin or gelonin) were similar. Co-administration of the enhancer SO1861 purified from plants enhances lysosomal escape. Enhancement with SO1861 increased potency of the immunotoxin (>3 log values) compared to the ADC (1 log). The uptake of antibody was demonstrated with the fluorescent conjugate mAb2C4:Alexa Fluor 568, and the release of dianthin-30:Alexa Fluor488 into the cytosol following addition of SO1861 supports our model. These data demonstrate that the immunotoxins are highly potent and that CTR is an effective target expressed by a large proportion of HGG cell lines representative of glioma stem cells and isolated from individual patients.


Subject(s)
Antibodies, Monoclonal/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Oligopeptides/pharmacology , Receptors, Calcitonin/antagonists & inhibitors , Ribosome Inactivating Proteins, Type 1/pharmacology , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Humans , Receptors, Calcitonin/immunology , Tumor Cells, Cultured
13.
J Neurosci ; 34(8): 2921-30, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24553933

ABSTRACT

Epigenetic mechanisms are essential in regulating neural progenitor cell self-renewal, with the chromatin-modifying protein Enhancer of zeste homolog 2 (EZH2) emerging as a central player in promoting progenitor cell self-renewal during cortical development. Despite this, how Ezh2 is itself regulated remains unclear. Here, we demonstrate that the transcription factor nuclear factor IB (NFIB) plays a key role in this process. Nfib(-/-) mice exhibit an increased number of proliferative ventricular zone cells that express progenitor cell markers and upregulation of EZH2 expression within the neocortex and hippocampus. NFIB binds to the Ezh2 promoter and overexpression of NFIB represses Ezh2 transcription. Finally, key downstream targets of EZH2-mediated epigenetic repression are misregulated in Nfib(-/-) mice. Collectively, these results suggest that the downregulation of Ezh2 transcription by NFIB is an important component of the process of neural progenitor cell differentiation during cortical development.


Subject(s)
Cerebral Cortex/growth & development , Epigenesis, Genetic/physiology , NFI Transcription Factors/genetics , NFI Transcription Factors/physiology , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/physiology , Animals , Cell Count , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Electrophoretic Mobility Shift Assay , Enhancer of Zeste Homolog 2 Protein , Female , Hippocampus/cytology , Hippocampus/growth & development , Immunohistochemistry , Male , Mice , Mice, Knockout , Microarray Analysis , Mutation/genetics , Mutation/physiology , Neural Stem Cells/physiology , Primary Cell Culture , Promoter Regions, Genetic/genetics , Real-Time Polymerase Chain Reaction
14.
Mol Imaging ; 14: 385-99, 2015.
Article in English | MEDLINE | ID: mdl-26218510

ABSTRACT

Noninvasive imaging is a critical technology for diagnosis, classification, and subsequent treatment planning for patients with glioblastoma. It has been shown that the EphA2 receptor tyrosine kinase (RTK) is overexpressed in a number of tumors, including glioblastoma. Expression levels of Eph RTKs have been linked to tumor progression, metastatic spread, and poor patient prognosis. As EphA2 is expressed at low levels in normal neural tissues, this protein represents an attractive imaging target for delineation of tumor infiltration, providing an improved platform for image-guided therapy. In this study, EphA2-4B3, a monoclonal antibody specific to human EphA2, was labeled with 64Cu through conjugation to the chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). The resulting complex was used as a positron emission tomography (PET) tracer for the acquisition of high-resolution longitudinal PET/magnetic resonance images. EphA2-4B3-NOTA-64Cu images were qualitatively and quantitatively compared to the current clinical standards of [18F]FDOPA and gadolinium (Gd) contrast-enhanced MRI. We show that EphA2-4B3-NOTA-64Cu effectively delineates tumor boundaries in three different mouse models of glioblastoma. Tumor to brain contrast is significantly higher in EphA2-4B3-NOTA-64Cu images than in [18F]FDOPA images and Gd contrast-enhanced MRI. Furthermore, we show that nonspecific uptake in the liver and spleen can be effectively blocked by a dose of nonspecific (isotype control) IgG.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Receptor, EphA2/metabolism , Animals , Antibodies, Monoclonal/metabolism , Brain/metabolism , Brain/pathology , Brain Neoplasms/pathology , Cell Line, Tumor , Contrast Media , Glioblastoma/pathology , Heterocyclic Compounds/metabolism , Heterocyclic Compounds, 1-Ring , Humans , Male , Mice , Middle Aged , Tissue Distribution , Xenograft Model Antitumor Assays
15.
J Biol Chem ; 288(52): 37355-64, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24265321

ABSTRACT

Studies in cell culture and mouse models of cancer have indicated that the soluble sphingolipid metabolite sphingosine 1-phosphate (S1P) promotes cancer cell proliferation, survival, invasiveness, and tumor angiogenesis. In contrast, its metabolic precursor ceramide is prodifferentiative and proapoptotic. To determine whether sphingolipid balance plays a significant role in glioma malignancy, we undertook a comprehensive analysis of sphingolipid metabolites in human glioma and normal gray matter tissue specimens. We demonstrate, for the first time, a systematic shift in sphingolipid metabolism favoring S1P over ceramide, which increases with increasing cancer grade. S1P content was, on average, 9-fold higher in glioblastoma tissues compared with normal gray matter, whereas the most abundant form of ceramide in the brain, C18 ceramide, was on average 5-fold lower. Increased S1P content in the tumors was significantly correlated with increased sphingosine kinase 1 (SPHK1) and decreased sphingosine phosphate phosphatase 2 (SGPP2) expression. Inhibition of S1P production by cultured glioblastoma cells, using a highly potent and selective SPHK1 inhibitor, blocked angiogenesis in cocultured endothelial cells without affecting VEGF secretion. Our findings validate the hypothesis that an altered ceramide/S1P balance is an important feature of human cancers and support the development of SPHK1 inhibitors as antiangiogenic agents for cancer therapy.


Subject(s)
Brain Neoplasms/metabolism , Ceramides/biosynthesis , Glioblastoma/metabolism , Lipid Metabolism , Lysophospholipids/biosynthesis , Neovascularization, Pathologic/metabolism , Sphingosine/analogs & derivatives , Angiogenesis Inhibitors/therapeutic use , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Ceramides/genetics , Enzyme Inhibitors/therapeutic use , Follow-Up Studies , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Lysophospholipids/genetics , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sphingosine/biosynthesis , Sphingosine/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
16.
Growth Factors ; 32(6): 254-64, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25410964

ABSTRACT

The Eph genes are the largest sub-family of receptor tyrosine kinases; however, it is most likely the least understood and the arena for many conflicting reports. In this tribute to Prof. Martin Lackmann and Prof. Tony Pawson, we utilized The Cancer Genome Atlas resources to shed new light on the understanding of this family. We found that mutation and expression analysis define two clusters of co-expressed Eph family genes that relate to aggressive phenotypes across multiple cancer types. Analysis of signal transduction pathways using reverse-phase protein arrays revealed a network of interactions, which associates cluster-specific Eph genes with epithelial-mesenchymal transition, metabolism, DNA-damage repair and apoptosis. Our findings support the role of the Eph family in modulating cancer progression and reveal distinct patterns of Eph expression, which correlate with disease outcome. These observations provide further rationale for seeking cancer therapies, which target the Eph/ephrin system.


Subject(s)
Biomarkers, Tumor/metabolism , Neoplasms/diagnosis , Receptors, Eph Family/metabolism , Animals , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Neoplasms/metabolism , Receptors, Eph Family/genetics
17.
Tumour Biol ; 35(2): 1459-65, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24068568

ABSTRACT

Reduced levels of specific microRNA in cancer are frequently reported and associated with attenuated cancer genes and associated pathways. We previously reported a loss of miR-124a in glioblastoma (GBM) patient specimens; however, the upstream causes of this loss are largely unknown. Loss of miR-124a has been attributed to hypermethylation while other studies have shown miR-124a to be regulated by the repressor-element-1-silencing transcription factor (REST, also known as neuron-restrictive silencing factor). This current study looked at both epigenetic and transcription factor regulation as potential mechanisms resulting in the loss of miR-124a expression in GBM patient specimens and cell lines. Hypermethylation of miR-124a was observed in 82 % of GBM patient specimens (n = 56). In vitro miR-124a expression levels also increased after treatment of several patient-derived cell lines with 5-aza-2'-deoxycytidine. Additionally, we also demonstrated a positive interaction between REST activity and miR-124a using a luciferase-binding assay and we correlated the reciprocal expression of REST and miR-124a in our clinical cohort. This result indicates that miR-124a expression may also be modulated through the upstream targeting of REST. Preclinical studies involving inhibitors of REST and treatment with demethylating agents with the intent to increase miR-124a levels could be interesting.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , MicroRNAs/genetics , Repressor Proteins/genetics , Aged , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , DNA Methylation/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Silencing , Glioblastoma/pathology , Humans , Middle Aged
18.
Oncotarget ; 15: 1-18, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227740

ABSTRACT

Glioblastoma cells can restrict the DNA-damaging effects of temozolomide (TMZ) and radiation therapy (RT) using the DNA damage response (DDR) mechanism which activates cell cycle arrest and DNA repair pathways. Ataxia-telangiectasia and Rad3-Related protein (ATR) plays a pivotal role in the recognition of DNA damage induced by chemotherapy and radiation causing downstream DDR activation. Here, we investigated the activity of gartisertib, a potent ATR inhibitor, alone and in combination with TMZ and/or RT in 12 patient-derived glioblastoma cell lines. We showed that gartisertib alone potently reduced the cell viability of glioblastoma cell lines, where sensitivity was associated with the frequency of DDR mutations and higher expression of the G2 cell cycle pathway. ATR inhibition significantly enhanced cell death in combination with TMZ and RT and was shown to have higher synergy than TMZ+RT treatment. MGMT promoter unmethylated and TMZ+RT resistant glioblastoma cells were also more sensitive to gartisertib. Analysis of gene expression from gartisertib treated glioblastoma cells identified the upregulation of innate immune-related pathways. Overall, this study identifies ATR inhibition as a strategy to enhance the DNA-damaging ability of glioblastoma standard treatment, while providing preliminary evidence that ATR inhibition induces an innate immune gene signature that warrants further investigation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/radiotherapy , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Tumor Suppressor Proteins/metabolism , Cell Death , Cell Line , DNA , Cell Line, Tumor , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
19.
J Immunother Cancer ; 12(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39111832

ABSTRACT

BACKGROUND: Adoptive T-cell therapy targeting antigens expressed in glioblastoma has emerged as a potential therapeutic strategy to prevent or delay recurrence and prolong overall survival in this aggressive disease setting. Ephrin receptor A3 (EphA3), which is highly expressed in glioblastoma; in particular, on the tumor vasculature and brain cancer stem cells, is an ideal target for immune-based therapies. METHODS: We have designed an EphA3-targeted chimeric antigen receptor (CAR) using the single chain variable fragment of a novel monoclonal antibody, and assessed its therapeutic potential against EphA3-expressing patient-derived glioblastoma neurospheres, organoids and xenografted glioblastoma tumors in immunodeficient mice. RESULTS: In vitro expanded EphA3 CAR T cells from healthy individuals efficiently recognize and kill EphA3-positive glioblastoma cells in vitro. Furthermore, these effector cells demonstrated curative efficacy in an orthotopic xenograft model of glioblastoma. EphA3 CAR T cells were equally effective in targeting patient-derived neurospheres and infiltrate, disaggregate, and induce apoptosis in glioblastoma-derived organoids. CONCLUSIONS: This study provides compelling evidence supporting the therapeutic potential of EphA3 CAR T-cell therapy against glioblastoma by targeting EphA3 associated with brain cancer stem cells and the tumor vasculature. The ability to target patient-derived glioblastoma underscores the translational significance of this EphA3 CAR T-cell therapy in the pursuit of effective and targeted glioblastoma treatment strategies.


Subject(s)
Glioblastoma , Receptor, EphA3 , Glioblastoma/therapy , Glioblastoma/immunology , Humans , Animals , Mice , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Xenograft Model Antitumor Assays , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , Cell Line, Tumor
20.
Cancer Lett ; : 217265, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39332586

ABSTRACT

Glioblastoma is characterized by a pronounced resistance to therapy with dismal prognosis. Transcriptomics classify glioblastoma into proneural (PN), mesenchymal (MES) and classical (CL) subtypes that show differential resistance to targeted therapies. The aim of this study was to provide a viable approach for identifying combination therapies in glioblastoma subtypes. Proteomics and phosphoproteomics were performed on dasatinib inhibited glioblastoma stem cells (GSCs) and complemented by an shRNA loss-of-function screen to identify genes whose knockdown sensitizes GSCs to dasatinib. Proteomics and screen data were computationally integrated with transcriptomic data using the SamNet 2.0 algorithm for network flow learning to reveal potential combination therapies in PN GSCs. In vitro viability assays and tumor spheroid models were used to verify the synergy of identified therapy. Further in vitro and TCGA RNA-Seq data analyses were utilized to provide a mechanistic explanation of these effects. Integration of data revealed the cell cycle protein WEE1 as a potential combination therapy target for PN GSCs. Validation experiments showed a robust synergistic effect through combination of dasatinib and the WEE1 inhibitor, MK-1775, in PN GSCs. Combined inhibition using dasatinib and MK-1775 propagated DNA damage in PN GCSs, with GCSs showing a differential subtype-driven pattern of expression of cell cycle genes in TCGA RNA-Seq data. The integration of proteomics, loss-of-function screens and transcriptomics confirmed WEE1 as a target for combination with dasatinib against PN GSCs. Utilizing this integrative approach could be of interest for studying resistance mechanisms and revealing combination therapy targets in further tumor entities.

SELECTION OF CITATIONS
SEARCH DETAIL