ABSTRACT
Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10-8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10-22 and P = 8.1 × 10-12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10-8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10-8) and ARHGAP33 (P = 1.3 × 10-8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10-8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.
Subject(s)
COVID-19 , Genome-Wide Association Study , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , COVID-19/genetics , Sex Characteristics , Genetic Loci , Genetic Predisposition to DiseaseABSTRACT
The genetic basis of severe COVID-19 has been thoroughly studied, and many genetic risk factors shared between populations have been identified. However, reduced sample sizes from non-European groups have limited the discovery of population-specific common risk loci. In this second study nested in the SCOURGE consortium, we conducted a genome-wide association study (GWAS) for COVID-19 hospitalization in admixed Americans, comprising a total of 4702 hospitalized cases recruited by SCOURGE and seven other participating studies in the COVID-19 Host Genetic Initiative. We identified four genome-wide significant associations, two of which constitute novel loci and were first discovered in Latin American populations (BAZ2B and DDIAS). A trans-ethnic meta-analysis revealed another novel cross-population risk locus in CREBBP. Finally, we assessed the performance of a cross-ancestry polygenic risk score in the SCOURGE admixed American cohort. This study constitutes the largest GWAS for COVID-19 hospitalization in admixed Latin Americans conducted to date. This allowed to reveal novel risk loci and emphasize the need of considering the diversity of populations in genomic research.
Subject(s)
COVID-19 , Genetic Predisposition to Disease , Genome-Wide Association Study , Hospitalization , Humans , COVID-19/genetics , COVID-19/epidemiology , Hospitalization/statistics & numerical data , SARS-CoV-2/genetics , Female , Male , Genetic Loci , Risk Factors , Polymorphism, Single Nucleotide , Middle Aged , Aged , Latin America/epidemiologyABSTRACT
AIMS: Although transplantation of skeletal myoblast (SkM) in models of chronic myocardial infarction (MI) induces an improvement in cardiac function, the limited engraftment remains a major limitation. We analyse in a pre-clinical model whether the sequential transplantation of autologous SkM by percutaneous delivery was associated with increased cell engraftment and functional benefit. METHODS AND RESULTS: Chronically infarcted Goettingen minipigs (n = 20) were divided in four groups that received either media control or one, two, or three doses of SkM (mean of 329.6 x 10(6) cells per dose) at intervals of 6 weeks and were followed for a total of 7 months. At the time of sacrifice, cardiac function was significantly better in animals treated with SkM in comparison with the control group. A significantly greater increase in the DeltaLVEF was detected in animals that received three doses vs. a single dose of SkM. A correlation between the total number of transplanted cells and the improvement in LVEF and DeltaLVEF was found (P < 0.05). Skeletal myoblast transplant was associated with an increase in tissue vasculogenesis and decreased fibrosis (collagen vascular fraction) and these effects were greater in animals receiving three doses of cells. CONCLUSION: Repeated injection of SkM in a model of chronic MI is feasible and safe and induces a significant improvement in cardiac function.
Subject(s)
Myoblasts, Skeletal/transplantation , Myocardial Infarction/therapy , Animals , Arrhythmias, Cardiac/etiology , Cell Differentiation , Chronic Disease , Fibrosis , Graft Survival , Immunohistochemistry , Myoblasts, Skeletal/cytology , Myocardium/pathology , Neovascularization, Physiologic/physiology , Swine , Swine, Miniature , Ventricular Dysfunction, Left/etiology , Ventricular Remodeling/physiologyABSTRACT
HepaSphere is a new spherical embolic material developed in a dry state that absorbs fluids and adapts to the vessel wall, leaving no space between the particle and the arterial wall. The aim of this study was to elucidate the final in vivo size, deformation, final location, and main properties of the particles when reconstituted with two different contrast media (Iodixanol and Ioxaglate) in an animal model. Two sizes of "dry-state" particles (50-100 and 150-200 microm) were reconstituted using both ionic and nonionic contrast media. The mixture was used to partly embolize both kidneys in an animal model (14 pigs). The animals were sacrificed 4 weeks after the procedure and the samples processed. The final size of the particles was 230.2 +/- 62.5 microm for the 50- to 100-microm dry-state particles and 314.4 +/- 71 microm for the 150- to 200-microm dry-state particles. When the contrast medium (ionic versus nonionic) used for the reconstitution was studied to compare (Student's t-test) the final size of the particles, no differences were found (p > 0.05). The mean in vivo deformation for HepaSphere was 17.1% +/- 12.3%. No differences (p > 0.05) were found in the deformation of the particle regarding the dry-state size or the contrast medium (Mann-Whitney test). We conclude that HepaSphere is stable, occludes perfectly, and morphologically adapts to the vessel lumen of the arteries embolized. There is no recanalization of the arteries 4 weeks after embolization. Its final in vivo size is predictable and the particle has the same properties in terms of size and deformation with the two different contrast media (Iodixanol and Ioxaglate).