Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Exp Med ; 195(6): 771-80, 2002 Mar 18.
Article in English | MEDLINE | ID: mdl-11901202

ABSTRACT

Splenectomized individuals are prone to overwhelming infections with encapsulated bacteria and splenectomy of mice increases susceptibility to streptococcal infections, yet the exact mechanism by which the spleen protects against such infections is unknown. Using congenitally asplenic mice as a model, we show that the spleen is essential for the generation of B-1a cells, a B cell population that cooperates with the innate immune system to control early bacterial and viral growth. Splenectomy of wild-type mice further demonstrated that the spleen is also important for the survival of B-1a cells. Transfer experiments demonstrate that lack of these cells, as opposed to the absence of the spleen per se, is associated with an inability to mount a rapid immune response against streptococcal polysaccharides. Thus, absence of the spleen and the associated increased susceptibility to streptococcal infections is correlated with lack of B-1a B cells. These findings reveal a hitherto unknown role of the spleen in generating and maintaining the B-1a B cell pool.


Subject(s)
B-Lymphocyte Subsets/immunology , Immunity , Spleen/immunology , Animals , B-Lymphocyte Subsets/cytology , Cell Differentiation/immunology , Flow Cytometry , Mice , Mice, Inbred C57BL , Mice, SCID , Splenectomy
2.
PLoS Genet ; 2(10): e149, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-17029558

ABSTRACT

Otitis media (OM), inflammation of the middle ear, remains the most common cause of hearing impairment in children. It is also the most common cause of surgery in children in the developed world. There is evidence from studies of the human population and mouse models that there is a significant genetic component predisposing to OM, yet nothing is known about the underlying genetic pathways involved in humans. We identified an N-ethyl-N-nitrosourea-induced dominant mouse mutant Junbo with hearing loss due to chronic suppurative OM and otorrhea. This develops from acute OM that arises spontaneously in the postnatal period, with the age of onset and early severity dependent on the microbiological status of the mice and their air quality. We have identified the causal mutation, a missense change in the C-terminal zinc finger region of the transcription factor Evi1. This protein is expressed in middle ear basal epithelial cells, fibroblasts, and neutrophil leukocytes at postnatal day 13 and 21 when inflammatory changes are underway. The identification and characterization of the Junbo mutant elaborates a novel role for Evi1 in mammalian disease and implicates a new pathway in genetic predisposition to OM.


Subject(s)
DNA-Binding Proteins/genetics , Genetic Predisposition to Disease/genetics , Mutation/genetics , Otitis Media/genetics , Proto-Oncogenes/genetics , Transcription Factors/genetics , Amino Acid Sequence , Animals , Chromosome Mapping , Cloning, Molecular , DNA Mutational Analysis , DNA-Binding Proteins/chemistry , Ear, Middle/cytology , Ear, Middle/pathology , Flow Cytometry , Granulocytes/immunology , Lung/cytology , Lung/pathology , MDS1 and EVI1 Complex Locus Protein , Male , Mice , Mice, Inbred BALB C , Mice, Mutant Strains , Molecular Sequence Data , Nose/cytology , Nose/pathology , Otitis Media/immunology , Phenotype , Specific Pathogen-Free Organisms , Transcription Factors/chemistry
3.
Diabetes ; 55(7): 2153-6, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16804088

ABSTRACT

The C57BL/6J mouse displays glucose intolerance and reduced insulin secretion. The genetic locus underlying this phenotype was mapped to nicotinamide nucleotide transhydrogenase (Nnt) on mouse chromosome 13, a nuclear-encoded mitochondrial protein involved in beta-cell mitochondrial metabolism. C57BL/6J mice have a naturally occurring in-frame five-exon deletion in Nnt that removes exons 7-11. This results in a complete absence of Nnt protein in these mice. We show that transgenic expression of the entire Nnt gene in C57BL/6J mice rescues their impaired insulin secretion and glucose-intolerant phenotype. This study provides direct evidence that Nnt deficiency results in defective insulin secretion and inappropriate glucose homeostasis in male C57BL/6J mice.


Subject(s)
Glucose Intolerance/genetics , NADP Transhydrogenases/genetics , Quantitative Trait Loci , Animals , Blood Glucose/metabolism , Chromosomes, Artificial, Bacterial , Exons , Glucose Intolerance/enzymology , Insulin/blood , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , NADP Transhydrogenases/deficiency , Sequence Deletion
4.
Dev Dyn ; 238(3): 581-94, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19235720

ABSTRACT

Vertebrate organs show consistent left-right (L-R) asymmetry in placement and patterning. To identify genes involved in this process we performed an ENU-based genetic screen. Of 135 lines analyzed 11 showed clear single gene defects affecting L-R patterning, including 3 new alleles of known L-R genes and mutants in novel L-R loci. We identified six lines (termed "gasping") that, in addition to abnormal L-R patterning and associated cardiovascular defects, had complex phenotypes including pulmonary agenesis, exencephaly, polydactyly, ocular and craniofacial malformations. These complex abnormalities are present in certain human disease syndromes (e.g., HYLS, SRPS, VACTERL). Gasping embryos also show defects in ciliogenesis, suggesting a role for cilia in these human congenital malformation syndromes. Our results indicate that genes controlling ciliogenesis and left-right asymmetry have, in addition to their known roles in cardiac patterning, major and unexpected roles in pulmonary, craniofacial, ocular and limb development with implications for human congenital malformation syndromes.


Subject(s)
Body Patterning/genetics , Extremities/embryology , Eye/embryology , Facial Bones/embryology , Mutagenesis/genetics , Respiratory System/embryology , Amino Acid Sequence , Animals , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Eye/metabolism , Facial Bones/metabolism , Gene Expression Regulation, Developmental/genetics , Humans , Mice , Microscopy, Electron, Scanning , Molecular Sequence Data , Mutation/genetics , Phenotype , Respiratory System/metabolism , Sequence Alignment
5.
Cell ; 128(1): 45-57, 2007 Jan 12.
Article in English | MEDLINE | ID: mdl-17218254

ABSTRACT

The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of alpha-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders.


Subject(s)
Cell Movement , Cerebral Cortex/abnormalities , Hippocampus/abnormalities , Mutation/genetics , Neurons/pathology , Tubulin/genetics , Tubulin/metabolism , Amino Acid Sequence , Animals , Anxiety/genetics , Anxiety/pathology , Behavior, Animal , Cerebral Cortex/pathology , Chromosome Mapping , DNA Mutational Analysis , Dimerization , Female , Glutamic Acid/genetics , Guanosine Triphosphate/metabolism , Hippocampus/pathology , Humans , Male , Memory Disorders/genetics , Memory Disorders/pathology , Mice , Mice, Mutant Strains , Molecular Sequence Data , Phenotype , Serine/genetics , Tubulin/chemistry
6.
J Biol Chem ; 281(19): 13733-13742, 2006 May 12.
Article in English | MEDLINE | ID: mdl-16551635

ABSTRACT

Specification and differentiation of the megakaryocyte and erythroid lineages from a common bipotential progenitor provides a well studied model to dissect binary cell fate decisions. To understand how the distinct megakaryocyte- and erythroid-specific gene programs arise, we have examined the transcriptional regulation of the megakaryocyte erythroid transcription factor GATA1. Hemopoietic-specific mouse (m)GATA1 expression requires the mGata1 enhancer mHS-3.5. Within mHS-3.5, the 3' 179 bp of mHS-3.5 are required for megakaryocyte but not red cell expression. Here, we show mHS-3.5 binds key hemopoietic transcription factors in vivo and is required to maintain histone acetylation at the mGata1 locus in primary megakaryocytes. Analysis of GATA1-LacZ reporter gene expression in transgenic mice shows that a 25-bp element within the 3'-179 bp in mHS-3.5 is critical for megakaryocyte expression. In vitro three DNA binding activities A, B, and C bind to the core of the 25-bp element, and these binding sites are conserved through evolution. Activity A is the zinc finger transcription factor ZBP89 that also binds to other cis elements in the mGata1 locus. Activity B is of particular interest as it is present in primary megakaryocytes but not red cells. Furthermore, mutation analysis in transgenic mice reveals activity B is required for megakaryocyte-specific enhancer function. Bioinformatic analysis shows sequence corresponding to the binding site for activity B is a previously unrecognized motif, present in the cis elements of the Fli1 gene, another important megakaryocyte-specific transcription factor. In summary, we have identified a motif and a DNA binding activity likely to be important in directing a megakaryocyte gene expression program that is distinct from that in red cells.


Subject(s)
Enhancer Elements, Genetic/genetics , GATA1 Transcription Factor/metabolism , Megakaryocytes/metabolism , Animals , Base Sequence , Cell Line , Conserved Sequence , DNA-Binding Proteins/metabolism , Erythrocytes/metabolism , GATA1 Transcription Factor/genetics , Gene Expression Regulation , Introns , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Organ Specificity , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Transcription Factors/metabolism
7.
Int Immunol ; 18(8): 1211-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16798839

ABSTRACT

The generation of anti-DNA auto-antibodies is characteristic for the human autoimmune condition systemic lupus erythematosus (SLE) and its animal models. However, the contribution of the toll-like receptor (TLR) system of innate immunity receptors and, in particular, TLR9 to this B cell-mediated autoimmune process remains controversial. Here we report that in a novel murine model of SLE, based on hyper-reactive B cell activation mediated by mutant phospholipase Cg2, the genetic deficiency of TLR9 does not protect from spontaneous anti-DNA auto-antibody formation and glomerulonephritis. On the contrary, disease induction is aggravated and additional nucleolar antibody specificity develops in autoimmune TLR9-deficient mice. In vitro studies demonstrate that, in autoimmune-prone mice, dual signaling via the B cell receptor and non-CpG DNA results in synergistic B cell activation in a TLR9-independent manner. These results suggest that engagement of a TLR9-independent DNA activation pathway may promote autoimmunity, while TLR9 signaling can ameliorate SLE-like immune pathology in vivo.


Subject(s)
Glomerulonephritis/immunology , Lupus Erythematosus, Systemic/immunology , Toll-Like Receptor 9/immunology , Animals , Antibodies, Antinuclear/biosynthesis , Antibodies, Antinuclear/immunology , Autoantibodies/biosynthesis , Autoantibodies/immunology , B-Lymphocytes/immunology , DNA/immunology , Disease Models, Animal , Female , Glomerulonephritis/enzymology , Glomerulonephritis/genetics , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/enzymology , Lupus Erythematosus, Systemic/genetics , Lymphocyte Activation , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Phospholipase C gamma/genetics , Phospholipase C gamma/immunology , Splenomegaly/immunology , Toll-Like Receptor 9/deficiency , Toll-Like Receptor 9/genetics
8.
Immunity ; 22(4): 451-65, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15845450

ABSTRACT

The identification of specific genetic loci that contribute to inflammatory and autoimmune diseases has proved difficult due to the contribution of multiple interacting genes, the inherent genetic heterogeneity present in human populations, and a lack of new mouse mutants. By using N-ethyl-N-nitrosourea (ENU) mutagenesis to discover new immune regulators, we identified a point mutation in the murine phospholipase Cg2 (Plcg2) gene that leads to severe spontaneous inflammation and autoimmunity. The disease is composed of an autoimmune component mediated by autoantibody immune complexes and B and T cell independent inflammation. The underlying mechanism is a gain-of-function mutation in Plcg2, which leads to hyperreactive external calcium entry in B cells and expansion of innate inflammatory cells. This mutant identifies Plcg2 as a key regulator in an autoimmune and inflammatory disease mediated by B cells and non-B, non-T haematopoietic cells and emphasizes that by distinct genetic modulation, a single point mutation can lead to a complex immunological phenotype.


Subject(s)
Autoimmunity , Calcium/metabolism , Inflammation/genetics , Point Mutation , Type C Phospholipases/genetics , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , B-Lymphocytes/metabolism , Base Sequence , Bone Marrow Cells/cytology , Dermatitis/genetics , Dermatitis/immunology , Male , Mice , Molecular Sequence Data , Phospholipase C gamma , Type C Phospholipases/metabolism , Up-Regulation
9.
Mamm Genome ; 15(8): 585-91, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15457338

ABSTRACT

N-ethyl-N-nitrosourea (ENU) introduces mutations throughout the mouse genome at relatively high efficiency. Successful high-throughput phenotype screens have been reported and alternative screens using sequence-based approaches have been proposed. For the purpose of generating an allelic series in selected genes by a sequence-based approach, we have constructed an archive of over 4000 DNA samples from individual F1 ENU-mutagenized mice paralleled by frozen sperm samples. Together with our previously reported archive, the total size now exceeds 6000 individuals. A gene-based screen of 27.4 Mbp of DNA, carried out using denaturing high-performance liquid chromatography (DHPLC), found a mutation rate of 1 in 1.01 Mbp of which 1 in 1.82 Mbp were potentially functional. Screening of whole or selected regions of genes on subsets of the archive has allowed us to identify 15 new alleles from 9 genes out of 15 tested. This is a powerful adjunct to conventional mutagenesis strategies and has the advantage of generating a variety of alleles with potentially different phenotypic outcomes that facilitate the investigation of gene function. It is now available to academic collaborators as a community resource.


Subject(s)
Alkylating Agents/pharmacology , Alleles , Ethylnitrosourea/pharmacology , Mutation , Animals , Chromatography, High Pressure Liquid , DNA Mutational Analysis , Mice
SELECTION OF CITATIONS
SEARCH DETAIL