Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38935874

ABSTRACT

Rationale Dysanapsis refers to a mismatch between airway tree caliber and lung size arising early in life. Dysanapsis assessed by computed tomography (CT) is evident by early adulthood and associated with chronic obstructive pulmonary disease (COPD) risk later in life. Objective By examining the genetic factors associated with CT-assessed dysanapsis, we aimed to elucidate its molecular underpinnings and physiological significance across the lifespan. Methods We performed a genome-wide association study (GWAS) of CT-assessed dysanapsis in 11,951 adults, including individuals from two population-based and two COPD-enriched studies. We applied colocalization analysis to integrate GWAS and gene expression data from whole blood and lung. Genetic variants associated with dysanapsis were combined into a genetic risk score that was applied to examine association with lung function in children from a population-based birth cohort (n=1,278) and adults from the UK Biobank (n=369,157). Measurements and Main Results CT-assessed dysanapsis was associated with genetic variants from 21 independent signals in 19 gene regions, implicating HHIP, DSP, and NPNT as potential molecular targets based on colocalization of their expression. Higher dysanapsis genetic risk score was associated with obstructive spirometry among 5 year old children and among adults in the 5th, 6th and 7th decades of life. Conclusions CT-assessed dysanapsis is associated with variation in genes previously implicated in lung development and dysanapsis genetic risk is associated with obstructive lung function from early life through older adulthood. Dysanapsis may represent an endo-phenotype link between the genetic variations associated with lung function and COPD.

2.
Mol Ecol ; 33(15): e17450, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38973501

ABSTRACT

Replicability of divergence after contact is a poorly characterized process, particularly in the contexts of phylogeography and postglacial range dynamics within species. Using contact zones located at the leading-, mid- and rear-edges of a species' range, we examined variation in outcomes to contact between divergent lineages of Campanula americana. We investigated whether contact zones vary in quantity and directionality of gene flow, how phylogeographic structure differs between contact zones, and how historic range dynamics may affect outcomes to contact. We found that all contact zones formed at similar times via primary contact yet detected significant admixture in only the rear-edge (RE) contact zone. In the northern leading-edge contact zone and the mid-range Virginia contact zone, gene flow was minimal and asymmetric. In the southern RE contact zone, gene flow was strong and symmetric. Asymmetric admixture in the leading-edge and Virginia contact zones matches the directionality of a known cosmopolitan cytonuclear incompatibility between lineages of C. americana. Our results emphasize the dependence of speciation processes on phylogeographic structure, evolutionary history and range dynamics.


Subject(s)
Gene Flow , Phylogeography , Campanulaceae/genetics , Genetics, Population , Genetic Speciation , Virginia
SELECTION OF CITATIONS
SEARCH DETAIL