Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835410

ABSTRACT

Rapid Whole Genome Sequencing (rWGS) represents a valuable exploration in critically ill pediatric patients. Early diagnosis allows care to be adjusted. We evaluated the feasibility, turnaround time (TAT), yield, and utility of rWGS in Belgium. Twenty-one unrelated critically ill patients were recruited from the neonatal intensive care units, the pediatric intensive care unit, and the neuropediatric unit, and offered rWGS as a first tier test. Libraries were prepared in the laboratory of human genetics of the University of Liège using Illumina DNA PCR-free protocol. Sequencing was performed on a NovaSeq 6000 in trio for 19 and in duo for two probands. The TAT was calculated from the sample reception to the validation of results. Clinical utility data were provided by treating physicians. A definite diagnosis was reached in twelve (57.5%) patients in 39.80 h on average (range: 37.05-43.7). An unsuspected diagnosis was identified in seven patients. rWGS guided care adjustments in diagnosed patients, including a gene therapy, an off-label drug trial and two condition-specific treatments. We successfully implemented the fastest rWGS platform in Europe and obtained one of the highest rWGS yields. This study establishes the path for a nationwide semi-centered rWGS network in Belgium.


Subject(s)
Critical Illness , Off-Label Use , Infant, Newborn , Humans , Child , Belgium , Whole Genome Sequencing/methods , Intensive Care Units, Pediatric
2.
Int J Mol Sci ; 23(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35216372

ABSTRACT

Branched-chain amino acids (BCAA) are essential amino acids playing crucial roles in protein synthesis and brain neurotransmission. Branched-chain ketoacid dehydrogenase (BCKDH), the flux-generating step of BCAA catabolism, is tightly regulated by reversible phosphorylation of its E1α-subunit. BCKDK is the kinase responsible for the phosphorylation-mediated inactivation of BCKDH. In three siblings with severe developmental delays, microcephaly, autism spectrum disorder and epileptic encephalopathy, we identified a new homozygous in-frame deletion (c.999_1001delCAC; p.Thr334del) of BCKDK. Plasma and cerebrospinal fluid concentrations of BCAA were markedly reduced. Hyperactivity of BCKDH and over-consumption of BCAA were demonstrated by functional tests in cells transfected with the mutant BCKDK. Treatment with pharmacological doses of BCAA allowed the restoring of BCAA concentrations and greatly improved seizure control. Behavioral and developmental skills of the patients improved to a lesser extent. Importantly, a retrospective review of the newborn screening results allowed the identification of a strong decrease in BCAA concentrations on dried blood spots, suggesting that BCKDK is a new treatable metabolic disorder probably amenable to newborn screening programs.


Subject(s)
Amino Acids, Branched-Chain/genetics , Brain Diseases/genetics , Brain/pathology , Epilepsy, Generalized/genetics , Loss of Function Mutation/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Amino Acid Sequence , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Brain Diseases/pathology , Cell Line , Female , HEK293 Cells , Humans , Male , Phosphorylation/genetics , Retrospective Studies
3.
Hum Mutat ; 41(4): 837-849, 2020 04.
Article in English | MEDLINE | ID: mdl-31898846

ABSTRACT

IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi-Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate.


Subject(s)
Gain of Function Mutation , Genetic Association Studies , Genotype , Interferon-Induced Helicase, IFIH1/genetics , Phenotype , Alleles , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/genetics , DNA Mutational Analysis , Female , Genetic Association Studies/methods , High-Throughput Nucleotide Sequencing , Humans , Interferon-Induced Helicase, IFIH1/chemistry , Male , Models, Molecular , Nervous System Malformations/diagnosis , Nervous System Malformations/genetics , Protein Conformation , Structure-Activity Relationship
4.
Genet Med ; 22(5): 908-916, 2020 05.
Article in English | MEDLINE | ID: mdl-31904027

ABSTRACT

PURPOSE: Multiple acyl-CoA dehydrogenase deficiency (MADD) is a life-threatening, ultrarare inborn error of metabolism. Case reports described successful D,L-3-hydroxybutyrate (D,L-3-HB) treatment in severely affected MADD patients, but systematic data on efficacy and safety is lacking. METHODS: A systematic literature review and an international, retrospective cohort study on clinical presentation, D,L-3-HB treatment method, and outcome in MADD(-like) patients. RESULTS: Our study summarizes 23 MADD(-like) patients, including 14 new cases. Median age at clinical onset was two months (interquartile range [IQR]: 8 months). Median age at starting D,L-3-HB was seven months (IQR: 4.5 years). D,L-3-HB doses ranged between 100 and 2600 mg/kg/day. Clinical improvement was reported in 16 patients (70%) for cardiomyopathy, leukodystrophy, liver symptoms, muscle symptoms, and/or respiratory failure. D,L-3-HB appeared not effective for neuropathy. Survival appeared longer upon D,L-3-HB compared with historical controls. Median time until first clinical improvement was one month, and ranged up to six months. Reported side effects included abdominal pain, constipation, dehydration, diarrhea, and vomiting/nausea. Median D,L-3-HB treatment duration was two years (IQR: 6 years). D,L-3-HB treatment was discontinued in 12 patients (52%). CONCLUSION: The strength of the current study is the international pooling of data demonstrating that D,L-3-HB treatment can be effective and safe in MADD(-like) patients.


Subject(s)
Cardiomyopathies , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , 3-Hydroxybutyric Acid , Acyl-CoA Dehydrogenase/genetics , Humans , Infant , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Retrospective Studies
5.
Hum Mutat ; 39(8): 1076-1080, 2018 08.
Article in English | MEDLINE | ID: mdl-29782060

ABSTRACT

We describe progressive spastic paraparesis in two male siblings and the daughter of one of these individuals. Onset of disease occurred within the first decade, with stiffness and gait difficulties. Brisk deep tendon reflexes and extensor plantar responses were present, in the absence of intellectual disability or dermatological manifestations. Cerebral imaging identified intracranial calcification in all symptomatic family members. A marked upregulation of interferon-stimulated gene transcripts was recorded in all three affected individuals and in two clinically unaffected relatives. A heterozygous IFIH1 c.2544T>G missense variant (p.Asp848Glu) segregated with interferon status. Although not highly conserved (CADD score 10.08 vs. MSC-CADD score of 19.33) and predicted as benign by in silico algorithms, this variant is not present on publically available databases of control alleles, and expression of the D848E construct in HEK293T cells indicated that it confers a gain-of-function. This report illustrates, for the first time, the occurrence of autosomal-dominant spastic paraplegia with intracranial calcifications due to an IFIH1-related type 1 interferonopathy.


Subject(s)
Interferon-Induced Helicase, IFIH1/genetics , Paraparesis, Spastic/genetics , Algorithms , Brain Diseases/genetics , Calcinosis/genetics , Female , Gain of Function Mutation/genetics , HEK293 Cells , Heterozygote , Humans , Male , Mutation, Missense/genetics , Pedigree
7.
Hum Mutat ; 36(8): 743-52, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25907713

ABSTRACT

Dent disease is a rare X-linked tubulopathy characterized by low molecular weight proteinuria, hypercalciuria, nephrocalcinosis and/or nephrolithiasis, progressive renal failure, and variable manifestations of other proximal tubule dysfunctions. It often progresses over a few decades to chronic renal insufficiency, and therefore molecular characterization is important to allow appropriate genetic counseling. Two genetic subtypes have been described to date: Dent disease 1 is caused by mutations of the CLCN5 gene, coding for the chloride/proton exchanger ClC-5; and Dent disease 2 by mutations of the OCRL gene, coding for the inositol polyphosphate 5-phosphatase OCRL-1. Herein, we review previously reported mutations (n = 192) and their associated phenotype in 377 male patients with Dent disease 1 and describe phenotype and novel (n = 42) and recurrent mutations (n = 24) in a large cohort of 117 Dent disease 1 patients belonging to 90 families. The novel missense and in-frame mutations described were mapped onto a three-dimensional homology model of the ClC-5 protein. This analysis suggests that these mutations affect the dimerization process, helix stability, or transport. The phenotype of our cohort patients supports and extends the phenotype that has been reported in smaller studies.


Subject(s)
Chloride Channels/genetics , Dent Disease/genetics , Mutation , Animals , Chloride Channels/chemistry , Chloride Channels/metabolism , Cohort Studies , Dent Disease/metabolism , Genetic Association Studies , Humans , Male , Mice , Mice, Knockout , Pedigree
8.
J Inherit Metab Dis ; 38(6): 1147-53, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25971455

ABSTRACT

Leukodystrophies are a heterogeneous group of severe genetic neurodegenerative disorders. A multiple mitochondrial dysfunctions syndrome was found in an infant presenting with a progressive leukoencephalopathy. Homozygosity mapping, whole exome sequencing, and functional studies were used to define the underlying molecular defect. Respiratory chain studies in skeletal muscle isolated from the proband revealed a combined deficiency of complexes I and II. In addition, western blotting indicated lack of protein lipoylation. The combination of these findings was suggestive for a defect in the iron-sulfur (Fe/S) protein assembly pathway. SNP array identified loss of heterozygosity in large chromosomal regions, covering the NFU1 and BOLA3, and the IBA57 and ABCB10 candidate genes, in 2p15-p11.2 and 1q31.1-q42.13, respectively. A homozygous c.436C > T (p.Arg146Trp) variant was detected in IBA57 using whole exome sequencing. Complementation studies in a HeLa cell line depleted for IBA57 showed that the mutant protein with the semi-conservative amino acid exchange was unable to restore the biochemical phenotype indicating a loss-of-function mutation of IBA57. In conclusion, defects in the Fe/S protein assembly gene IBA57 can cause autosomal recessive neurodegeneration associated with progressive leukodystrophy and fatal outcome at young age. In the affected patient, the biochemical phenotype was characterized by a defect in the respiratory chain complexes I and II and a decrease in mitochondrial protein lipoylation, both resulting from impaired assembly of Fe/S clusters.


Subject(s)
Carrier Proteins/genetics , Iron-Sulfur Proteins/genetics , Leukoencephalopathies/diagnosis , Leukoencephalopathies/genetics , Mitochondrial Diseases/diagnosis , Electron Transport Complex I/genetics , Fatal Outcome , Heterozygote , Homozygote , Humans , Infant , Magnetic Resonance Imaging , Male , Mitochondria/genetics , Mutation , Phenotype
9.
Mol Genet Metab ; 111(1): 52-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24291264

ABSTRACT

During an 18-month period, we noticed an alarming increase of newborn screening false positivity rate in identifying isovaleric acidemia. In 50 of 50 newborns presenting elevated C5-carnitine, we confirmed the presence of pivaloylcarnitine. Exogenous pivalate administration had been previously identified as the causal agent of this concern. No pivalic-ester prodrug is commercially available in Belgium, but pivalic derivates are also used in the cosmetic industry as emollient under the term "neopentanoate". We have identified neopentanoate-esters in a nipple-fissure unguent that was provided to young mothers. Ceasing distribution of this product hugely reduced the C5-carnitine false positivity rate.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnosis , Carnitine/blood , Isovaleryl-CoA Dehydrogenase/deficiency , Neonatal Screening , Prodrugs/pharmacology , Amino Acid Metabolism, Inborn Errors/metabolism , Belgium , Carnitine/analogs & derivatives , False Positive Reactions , Humans , Infant, Newborn , Isovaleryl-CoA Dehydrogenase/metabolism , Mass Spectrometry , Ointments , Pentanoic Acids/administration & dosage , Risk Factors
10.
J Inherit Metab Dis ; 37(5): 753-62, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24789341

ABSTRACT

Sapropterin dihydrochloride (SD) is the first drug treatment for phenylketonuria (PKU), but due to the lack of data, its use in maternal PKU must be undertaken with caution as noted in the FDA and EMEA labels. We collected data from eight pregnancies in PKU women treated with SD and we analysed the phenotypes of these patients, their tetrahydrobiopterin (BH4) responsiveness, the indications for SD treatment, the efficacy (metabolic control, phenylalanine (Phe) tolerance and offspring outcome) and the safety data. Results showed that in the seven patients known to be responsive to BH4, the use of SD during pregnancy was efficient in terms of metabolic control and Phe tolerance. The indications for giving SD included the failure of the low-Phe diet (n = 3), the fact that some of these women had never experienced the low Phe diet (n = 2), one unexpected pregnancy in a woman currently on SD and one pregnancy where the foetus was known to have PKU. The offspring of these seven pregnancies were all normal babies with normal birth measurements and outcomes. No side effect related to SD was observed in these seven cases. In the eighth case, SD was prescribed as a rescue treatment without previous knowledge of the BH4 responsiveness to a woman who was already 8 weeks pregnant without diet. The birth occurred at 33 weeks of gestational age with Potter syndrome (probably related to the absence of metabolic control during the first trimester) and the baby died in the first hours of life. In conclusion, the data presented here provides the first evidence that treatment with pharmacological doses of SD appears to be efficient and safe in women with PKU during pregnancy. Its use should, however, be restricted to those women previously identified to be clear responders to BH4.


Subject(s)
Biopterins/analogs & derivatives , Phenylketonuria, Maternal/drug therapy , Adult , Biopterins/therapeutic use , Europe , Female , Fetal Blood/metabolism , Genotype , Humans , Infant, Newborn , Nutritional Status , Phenylalanine/blood , Phenylketonuria, Maternal/genetics , Pregnancy , Pregnancy Complications/drug therapy , Pregnancy Outcome , Pterins/blood
11.
Eur J Paediatr Neurol ; 49: 60-65, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377647

ABSTRACT

Fatty acid oxidation (FAO) disorders are autosomal recessive genetic disorders affecting either the transport or the oxidation of fatty acids. Acute symptoms arise during prolonged fasting, intercurrent infections, or intense physical activity. Metabolic crises are characterized by alteration of consciousness, hypoglycemic coma, hepatomegaly, cardiomegaly, arrhythmias, rhabdomyolysis, and can lead to death. In this retrospective and multicentric study, the data of 54 patients with FAO disorders were collected. Overall, 35 patients (64.8%) were diagnosed after newborn screening (NBS), 17 patients on clinical presentation (31.5%), and two patients after family screening (3.7%). Deficiencies identified included medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (75.9%), very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (11.1%), long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency (3.7%), mitochondrial trifunctional protein (MTP) deficiency (1.8%), and carnitine palmitoyltransferase 2 (CPT 2) deficiency (7.4%). The NBS results of 25 patients were reviewed and the neurological outcome of this population was compared with that of the patients who were diagnosed on clinical presentation. This article sought to provide a comprehensive overview of how NBS implementation in Southern Belgium has dramatically improved the neurological outcome of patients with FAO disorders by preventing metabolic crises and death. Further investigations are needed to better understand the physiopathology of long-term complications in order to improve the quality of life of patients and to ensure optimal management.


Subject(s)
Acyl-CoA Dehydrogenase/deficiency , Cardiomyopathies , Carnitine O-Palmitoyltransferase/deficiency , Lipid Metabolism, Inborn Errors , Metabolism, Inborn Errors , Mitochondrial Trifunctional Protein/deficiency , Neonatal Screening , Rhabdomyolysis , Humans , Infant, Newborn , Retrospective Studies , Male , Female , Neonatal Screening/methods , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/complications , Belgium/epidemiology , Infant , Congenital Bone Marrow Failure Syndromes/complications , Congenital Bone Marrow Failure Syndromes/diagnosis , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Fatty Acids/metabolism , Child, Preschool , Muscular Diseases/diagnosis , Child , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/complications , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/complications , Nervous System Diseases/etiology , Nervous System Diseases/diagnosis
12.
Mol Genet Metab ; 109(2): 227-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23647707

ABSTRACT

Congenital generalized lipodystrophy is a rare inherited multisystemic disorder associated with disturbances of adipocyte functions. We report a young boy presenting at age 1 month with liver disease and severe hypertrophic cardiomyopathy. Despite this multisystemic involvement and contrasting with a cachectic appearance, the anthropometric parameters showed marked overgrowth (+4 DS), leading to diagnosis of congenital lipodystrophy, which was confirmed by the presence of the new homozygous c.259C>T (p.Gln87*) mutation in the AGPAT2 gene. Early infantile cardiomyopathy should be considered as a specific endophenotype in Berardinelli-Seip Congenital Lipodystrophy syndrome.


Subject(s)
Cardiomyopathy, Hypertrophic/diagnosis , Lipodystrophy, Congenital Generalized/diagnosis , Liver Diseases/diagnosis , Acyltransferases/genetics , Cardiomyopathy, Hypertrophic/etiology , Cardiomyopathy, Hypertrophic/genetics , Codon, Nonsense , Consanguinity , Humans , Infant , Lipodystrophy, Congenital Generalized/complications , Lipodystrophy, Congenital Generalized/genetics , Liver Diseases/etiology , Liver Diseases/genetics , Male
13.
Front Cell Dev Biol ; 11: 1021920, 2023.
Article in English | MEDLINE | ID: mdl-36926521

ABSTRACT

Purpose: Multi-omics offer worthwhile and increasingly accessible technologies to diagnostic laboratories seeking potential second-tier strategies to help patients with unresolved rare diseases, especially patients clinically diagnosed with a rare OMIM (Online Mendelian Inheritance in Man) disease. However, no consensus exists regarding the optimal diagnostic care pathway to adopt after negative results with standard approaches. Methods: In 15 unsolved individuals clinically diagnosed with recognizable OMIM diseases but with negative or inconclusive first-line genetic results, we explored the utility of a multi-step approach using several novel omics technologies to establish a molecular diagnosis. Inclusion criteria included a clinical autosomal recessive disease diagnosis and single heterozygous pathogenic variant in the gene of interest identified by first-line analysis (60%-9/15) or a clinical diagnosis of an X-linked recessive or autosomal dominant disease with no causative variant identified (40%-6/15). We performed a multi-step analysis involving short-read genome sequencing (srGS) and complementary approaches such as mRNA sequencing (mRNA-seq), long-read genome sequencing (lrG), or optical genome mapping (oGM) selected according to the outcome of the GS analysis. Results: SrGS alone or in combination with additional genomic and/or transcriptomic technologies allowed us to resolve 87% of individuals by identifying single nucleotide variants/indels missed by first-line targeted tests, identifying variants affecting transcription, or structural variants sometimes requiring lrGS or oGM for their characterization. Conclusion: Hypothesis-driven implementation of combined omics technologies is particularly effective in identifying molecular etiologies. In this study, we detail our experience of the implementation of genomics and transcriptomics technologies in a pilot cohort of previously investigated patients with a typical clinical diagnosis without molecular etiology.

14.
Eur J Hum Genet ; 31(4): 461-468, 2023 04.
Article in English | MEDLINE | ID: mdl-36747006

ABSTRACT

Haploinsufficiency of TRIP12 causes a neurodevelopmental disorder characterized by intellectual disability associated with epilepsy, autism spectrum disorder and dysmorphic features, also named Clark-Baraitser syndrome. Only a limited number of cases have been reported to date. We aimed to further delineate the TRIP12-associated phenotype and objectify characteristic facial traits through GestaltMatcher image analysis based on deep-learning algorithms in order to establish a TRIP12 gestalt. 38 individuals between 3 and 66 years (F = 20, M = 18) - 1 previously published and 37 novel individuals - were recruited through an ERN ITHACA call for collaboration. 35 TRIP12 variants were identified, including frameshift (n = 15) and nonsense (n = 6) variants, as well as missense (n = 5) and splice (n = 3) variants, intragenic deletions (n = 4) and two multigene deletions disrupting TRIP12. Though variable in severity, global developmental delay was noted in all individuals, with language deficit most pronounced. About half showed autistic features and susceptibility to obesity seemed inherent to this disorder. A more severe expression was noted in individuals with a missense variant. Facial analysis showed a clear gestalt including deep-set eyes with narrow palpebral fissures and fullness of the upper eyelids, downturned corners of the mouth and large, often low-set ears with prominent earlobes. We report the largest cohort to date of individuals with TRIP12 variants, further delineating the associated phenotype and introducing a facial gestalt. These findings will improve future counseling and patient guidance.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Humans , Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Phenotype , Neurodevelopmental Disorders/genetics , Mutation, Missense , Carrier Proteins/genetics , Ubiquitin-Protein Ligases/genetics
15.
J Med Genet ; 48(3): 183-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21266382

ABSTRACT

BACKGROUND: The natural history of all known patients with French-Canadian Leigh disease (Saguenay-Lac-St-Jean cytochrome c oxidase deficiency, MIM220111, SLSJ-COX), the largest known cohort of patients with a genetically homogeneous, nuclear encoded congenital lactic acidosis, was studied. RESULTS: 55 of 56 patients were homozygous for the A354V mutation in LRPPRC. One was a genetic compound (A354V/C1277Xdel8). Clinical features included developmental delay, failure to thrive, characteristic facial appearance and, in 90% of patients, acute crises that have not previously been detailed, either metabolic (fulminant lactic acidosis) and/or neurological (Leigh syndrome and/or stroke-like episodes). Survival ranged from 5 days to >30 years. 46/56 patients (82%) died, at a median age of 1.6 years. Of 73 crises, 38 (52%) were fatal. The immediate causes of death were multiple organ failure and/or Leigh disease. Major predictors of mortality during crises (p<0.005) were hyperglycaemia, hepatic cytolysis, and altered consciousness at admission. Compared to a group of SURF1-deficient Leigh syndrome patients assembled from the literature, SLSJ-COX is distinct by the occurrence of metabolic crises, leading to earlier and higher mortality (p=0.001). CONCLUSION: SLSJ-COX is clinically distinct, with acute fatal acidotic crises on a backdrop of chronic moderate developmental delay and hyperlactataemia. Leigh syndrome is common. Stroke-like episodes can occur. The Leigh syndrome of SLSJ-COX differs from that of SURF1-related COX deficiency. SLSJ-COX has a different spectrum of associated abnormalities, acidotic crises being particularly suggestive of LRPPRC related Leigh syndrome. Even among A354V homozygotes, pronounced differences in survival and severity occur, showing that other genetic and/or environmental factors can influence outcome.


Subject(s)
Cytochrome-c Oxidase Deficiency/genetics , Leigh Disease/genetics , Mutation , Neoplasm Proteins/genetics , Acidosis, Lactic/genetics , Adolescent , Child , Child, Preschool , Female , Follow-Up Studies , Homozygote , Humans , Infant , Leigh Disease/metabolism , Logistic Models , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Neoplasm Proteins/metabolism , Phenotype , Retrospective Studies , Young Adult
16.
Ann Biol Clin (Paris) ; 79(1): 49-55, 2021 Feb 01.
Article in French | MEDLINE | ID: mdl-33570037

ABSTRACT

Phenylketonuria is an inherited metabolic disease, of autosomal recessive transmission, due to the enzymatic deficit of phenylalanine hydroxylase, which transforms phenylalanine into tyrosine. The deficit leads to an increase in phenylalanine and its metabolite, phenylpyruvic acid which is responsible for the toxicity and symptomatology characterized by serious neurological disorders. Through this work, we wanted to show: 1) the profile of phenylalanine concentrations in a cohort of 52 Moroccan phenylketonuric patients diagnosed in our laboratory by Tandem Mass Spectrometry coupled with HPLC; 2) The value of biological monitoring in the nutritional management of phenylketonuric patients. The results showed that phenylketonuria diagnosed in Morocco is characterized by a predominance of classic and moderate phenylketonuria in both sexes with a median concentration = 1,107 µmol/L, 26 times higher than that observed in the control group (median value = 42 µmol/L - p < 0.0001). The phenylalanine and tyrosine concentrations of 33 phenylketonuric patients regularly monitored by our laboratory highlights the effectiveness of the hypoproteic diet with a marked improvement in psychomotor development, a significant regression in behavioral disorders and an encouraging overall development of children. Conclusion: phenylketonuria is a disease that would be frequent in Morocco but it is still diagnosed at the stage of severe mental retardation. A better management of these patients could be considered when setting up a nation-wide neonatal screening program.


Subject(s)
Phenylketonurias , Tandem Mass Spectrometry , Chromatography, Liquid , Female , Humans , Male , Morocco/epidemiology , Phenylalanine , Phenylketonurias/diagnosis , Phenylketonurias/epidemiology
17.
Clin Nutr ; 40(6): 4246-4254, 2021 06.
Article in English | MEDLINE | ID: mdl-33551217

ABSTRACT

BACKGROUND & AIMS: Hyperuricemia is an independent risk factor for the metabolic syndrome and cardiovascular disease. We hypothesized that asymptomatic carriers for hereditary fructose intolerance (OMIM 22960) would have increased uric acid and altered component of the metabolic syndrome when exposed to fructose overfeeding. METHODS: Six heterozygotes for HFI (hHFI) and 6 controls (Ctrl) were studied in a randomized, controlled, crossover trial. Participants ingested two identical test meals containing 0.7 g kg-1 glucose and 0.7 g kg-1 fructose according to a cross-over design, once after a 7-day on a low fructose diet (LoFruD, <10 g/d) and on another occasion after 7 days on a high fructose diet (HiFruD, 1.4 g kg-1 day-1 fructose + 0.1 g kg-1 day-1 glucose). Uric acid, glucose, and insulin concentrations were monitored in fasting conditions and over 2 h postprandial, and insulin resistance indexes were calculated. RESULTS: HiFruD increased fasting uric acid (p < 0.05) and reduced fasting insulin sensitivity estimated by the homeostasis model assessment (HOMA) for insulin resistance (p < 0.05), in both groups. Postprandial glucose concentrations were not different between hHFI and Ctrl. However HiFruD increased postprandial plasma uric acid, insulin and hepatic insulin resistance index (HIRI) in hHFI only (all p < 0.05). CONCLUSIONS: Seven days of HiFruD increased fasting uric acid and slightly reduced fasting HOMA index in both groups. In contrast, HiFruD increased postprandial uric acid, insulin concentration and HIRI in hHFI only, suggesting that heterozygosity for pathogenic Aldolase B variants may confer an increased susceptibility to the effects of dietary fructose on uric acid and hepatic insulin sensitivity. This trial was registered at the U.S. Clinical Trials Registry as NCT03545581.


Subject(s)
Diet, Carbohydrate Loading/adverse effects , Fructose Intolerance/blood , Fructose/adverse effects , Hyperuricemia/genetics , Uric Acid/blood , Adult , Blood Glucose/metabolism , Cross-Over Studies , Diet, Carbohydrate Loading/methods , Fasting/blood , Female , Fructose/administration & dosage , Fructose Intolerance/genetics , Fructose-Bisphosphate Aldolase/genetics , Glucose/administration & dosage , Glucose/adverse effects , Heterozygote , Humans , Hyperuricemia/etiology , Insulin/blood , Insulin Resistance/genetics , Liver/metabolism , Male , Meals/physiology , Metabolic Syndrome/blood , Metabolic Syndrome/genetics , Postprandial Period
18.
Mol Genet Genomic Med ; 9(9): e1768, 2021 09.
Article in English | MEDLINE | ID: mdl-34402213

ABSTRACT

BACKGROUND: Primary microcephaly (PM) is defined as a significant reduction in occipitofrontal circumference (OFC) of prenatal onset. Clinical and genetic heterogeneity of PM represents a diagnostic challenge. METHODS: We performed detailed phenotypic and genomic analyses in a large cohort (n = 169) of patients referred for PM and could establish a molecular diagnosis in 38 patients. RESULTS: Pathogenic variants in ASPM and WDR62 were the most frequent causes in non-consanguineous patients in our cohort. In consanguineous patients, microarray and targeted gene panel analyses reached a diagnostic yield of 67%, which contrasts with a much lower rate in non-consanguineous patients (9%). Our series includes 11 novel pathogenic variants and we identify novel candidate genes including IGF2BP3 and DNAH2. We confirm the progression of microcephaly over time in affected children. Epilepsy was an important associated feature in our PM cohort, affecting 34% of patients with a molecular confirmation of the PM diagnosis, with various degrees of severity and seizure types. CONCLUSION: Our findings will help to prioritize genomic investigations, accelerate molecular diagnoses, and improve the management of PM patients.


Subject(s)
Consanguinity , Epilepsy/genetics , Genotype , Microcephaly/genetics , Phenotype , Cell Cycle Proteins/genetics , Child , Epilepsy/epidemiology , Epilepsy/pathology , Female , Gene Frequency , Genetic Heterogeneity , Humans , Incidence , Male , Microcephaly/complications , Microcephaly/pathology , Nerve Tissue Proteins/genetics
19.
J Clin Invest ; 131(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-33945503

ABSTRACT

BACKGROUNDDeciphering the function of the many genes previously classified as uncharacterized open reading frame (ORF) would complete our understanding of a cell's function and its pathophysiology.METHODSWhole-exome sequencing, yeast 2-hybrid and transcriptome analyses, and molecular characterization were performed in this study to uncover the function of the C2orf69 gene.RESULTSWe identified loss-of-function mutations in the uncharacterized C2orf69 gene in 8 individuals with brain abnormalities involving hypomyelination and microcephaly, liver dysfunction, and recurrent autoinflammation. C2orf69 contains an N-terminal signal peptide that is required and sufficient for mitochondrial localization. Consistent with mitochondrial dysfunction, the patients showed signs of respiratory chain defects, and a CRISPR/Cas9-KO cell model of C2orf69 had similar respiratory chain defects. Patient-derived cells revealed alterations in immunological signaling pathways. Deposits of periodic acid-Schiff-positive (PAS-positive) material in tissues from affected individuals, together with decreased glycogen branching enzyme 1 (GBE1) activity, indicated an additional impact of C2orf69 on glycogen metabolism.CONCLUSIONSOur study identifies C2orf69 as an important regulator of human mitochondrial function and suggests that this gene has additional influence on other metabolic pathways.


Subject(s)
Glycogen/metabolism , Loss of Function Mutation , Microcephaly/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Open Reading Frames , Animals , Cell Line , Glycogen/genetics , Glycogen Debranching Enzyme System/genetics , Glycogen Debranching Enzyme System/metabolism , Humans , Mice , Mice, Knockout , Microcephaly/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics
20.
Eur J Hum Genet ; 29(4): 625-636, 2021 04.
Article in English | MEDLINE | ID: mdl-33437032

ABSTRACT

Witteveen-Kolk syndrome (OMIM 613406) is a recently defined neurodevelopmental syndrome caused by heterozygous loss-of-function variants in SIN3A. We define the clinical and neurodevelopmental phenotypes related to SIN3A-haploinsufficiency in 28 unreported patients. Patients with SIN3A variants adversely affecting protein function have mild intellectual disability, growth and feeding difficulties. Involvement of a multidisciplinary team including a geneticist, paediatrician and neurologist should be considered in managing these patients. Patients described here were identified through a combination of clinical evaluation and gene matching strategies (GeneMatcher and Decipher). All patients consented to participate in this study. Mean age of this cohort was 8.2 years (17 males, 11 females). Out of 16 patients ≥ 8 years old assessed, eight (50%) had mild intellectual disability (ID), four had moderate ID (22%), and one had severe ID (6%). Four (25%) did not have any cognitive impairment. Other neurological symptoms such as seizures (4/28) and hypotonia (12/28) were common. Behaviour problems were reported in a minority. In patients ≥2 years, three were diagnosed with Autism Spectrum Disorder (ASD) and four with Attention Deficit Hyperactivity Disorder (ADHD). We report 27 novel variants and one previously reported variant. 24 were truncating variants; three were missense variants and one large in-frame gain including exons 10-12.


Subject(s)
Craniofacial Abnormalities/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Phenotype , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Adolescent , Child , Child, Preschool , Craniofacial Abnormalities/pathology , Developmental Disabilities/pathology , Female , Humans , Infant , Intellectual Disability/pathology , Male , Mutation , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL