Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Virol ; 90(1): 92-102, 2016 01 01.
Article in English | MEDLINE | ID: mdl-26468529

ABSTRACT

UNLABELLED: Dengue virus (DENV) is the etiological agent of the major human arboviral disease. We previously demonstrated that the TIM and TAM families of phosphatidylserine (PtdSer) receptors involved in the phagocytosis of apoptotic cells mediate DENV entry into target cells. We show here that human CD300a, a recently identified phospholipid receptor, also binds directly DENV particles and enhances viral entry. CD300a facilitates infection of the four DENV serotypes, as well as of other mosquito-borne viruses such as West Nile virus and Chikungunya virus. CD300a acts as an attachment factor that enhances DENV internalization through clathrin-mediated endocytosis. CD300a recognizes predominantly phosphatidylethanolamine (PtdEth) and to a lesser extent PtdSer associated with viral particles. Mutation of residues in the IgV domain critical for phospholipid binding abrogate CD300a-mediated enhancement of DENV infection. Finally, we show that CD300a is expressed at the surface of primary macrophages and anti-CD300a polyclonal antibodies partially inhibited DENV infection of these cells. Overall, these data indicate that CD300a is a novel DENV binding receptor that recognizes PtdEth and PtdSer present on virions and enhance infection. IMPORTANCE: Dengue disease, caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease of humans and is a major global health concern. The molecular bases of DENV-host cell interactions during virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. We recently discovered that the TIM and TAM proteins, two receptor families involved in the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, interact with DENV particles-associated PtdSer through a mechanism that mimics the recognition of apoptotic cells and mediate DENV infection. In this study, we show that CD300a, a novel identified phospholipid receptor, mediates DENV infection. CD300a-dependent DENV infection relies on the direct recognition of phosphatidylethanolamine and to a lesser extent PtdSer associated with viral particles. This study provides novel insights into the mechanisms that mediate DENV entry and reinforce the concept that DENV uses an apoptotic mimicry strategy for viral entry.


Subject(s)
Antigens, CD/metabolism , Dengue Virus/physiology , Host-Pathogen Interactions , Receptors, Immunologic/metabolism , Receptors, Virus/metabolism , Virus Internalization , Cell Line , Chikungunya virus/physiology , Endocytosis , Humans , Macrophages/chemistry , Membrane Proteins/analysis , Phosphatidylethanolamines/metabolism , Phosphatidylserines/metabolism , Protein Binding , West Nile virus/physiology
2.
J Virol ; 89(17): 8880-96, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26085147

ABSTRACT

UNLABELLED: Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. IMPORTANCE: Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host.


Subject(s)
Dendritic Cells/virology , Flaviviridae/physiology , Keratinocytes/virology , Virus Internalization , Virus Replication , Aedes/virology , Animals , Autophagy/immunology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cells, Cultured , Chlorocebus aethiops , Cytokines/biosynthesis , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Dendritic Cells/immunology , Fibroblasts/virology , Flaviviridae/immunology , Flaviviridae Infections/immunology , Flaviviridae Infections/virology , HEK293 Cells , Hepatitis A Virus Cellular Receptor 1 , Humans , Insect Vectors/virology , Interferon-Induced Helicase, IFIH1 , Interferon-beta/biosynthesis , Interferon-beta/immunology , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Myxovirus Resistance Proteins/biosynthesis , Phagosomes/immunology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA Interference , RNA, Small Interfering , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Immunologic , Receptors, Virus/genetics , Receptors, Virus/metabolism , Skin/immunology , Skin/virology , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/immunology , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/immunology , Ubiquitins/biosynthesis , Vero Cells , Axl Receptor Tyrosine Kinase
3.
Virologie (Montrouge) ; 18(6): 325-336, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-33065925

ABSTRACT

Apoptotic cells clearance, or efferocytosis, is an essential and highly conserved cellular process mainly based on the recognition of the phosphatidylserine (PtdSer) exposed on the surface of apoptotic bodies by the phagocyte. Since a decade, several studies have shown that many viruses can hijack this biological process by exposing PtdSer on their viral envelope to facilitate infection. This apoptotic mimicry concept has been recently strengthened by recent discoveries showing that multiple enveloped virus families bind directly or indirectly to PtdSer receptors in order to initiate their infectious cycle. This review focus on recent advances in this topic and discuss about PtdSer receptors function, especially TIM (T-Cell Immunoglobulin and Mucin domain) and TAM (Tyro3, Axl, Mer) families, during infection and viral entry.

4.
Cell Rep ; 23(6): 1779-1793, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29742433

ABSTRACT

Dengue virus (DENV) is a major human pathogen causing millions of infections yearly. Despite intensive investigations, a DENV receptor that directly participates in virus internalization has not yet been characterized. Here, we report that the phosphatidylserine receptor TIM-1 is an authentic DENV entry receptor that plays an active role in virus endocytosis. Genetic ablation of TIM-1 strongly impaired DENV infection. Total internal reflection fluorescence microscopy analyses of live infected cells show that TIM-1 is mostly confined in clathrin-coated pits and is co-internalized with DENV during viral entry. TIM-1 is ubiquitinated at two lysine residues of its cytoplasmic domain, and this modification is required for DENV endocytosis. Furthermore, STAM-1, a component of the ESCRT-0 complex involved in intracellular trafficking of ubiquitinated cargos, interacts with TIM-1 and is required for DENV infection. Overall, our results show that TIM-1 is the first bona fide receptor identified for DENV.


Subject(s)
Dengue Virus/physiology , Dengue/virology , Hepatitis A Virus Cellular Receptor 1/metabolism , Ubiquitination , Virus Internalization , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Cell Line, Tumor , Dengue Virus/ultrastructure , Endocytosis , Endosomal Sorting Complexes Required for Transport/metabolism , Gene Deletion , Hepatitis A Virus Cellular Receptor 1/chemistry , Hepatitis A Virus Cellular Receptor 1/genetics , Humans , Phosphoproteins/metabolism , Protein Binding , Protein Domains , Proteomics
5.
Cell Rep ; 21(13): 3900-3913, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29281836

ABSTRACT

Dengue virus (DENV) infections cause the most prevalent mosquito-borne viral disease worldwide, for which no therapies are available. DENV encodes seven non-structural (NS) proteins that co-assemble and recruit poorly characterized host factors to form the DENV replication complex essential for viral infection. Here, we provide a global proteomic analysis of the human host factors that interact with the DENV NS1 protein. Combined with a functional RNAi screen, this study reveals a comprehensive network of host cellular processes involved in DENV infection and identifies DENV host restriction and dependency factors. We highlight an important role of RACK1 and the chaperonin TRiC (CCT) and oligosaccharyltransferase (OST) complexes during DENV replication. We further show that the OST complex mediates NS1 and NS4B glycosylation, and pharmacological inhibition of its N-glycosylation function strongly impairs DENV infection. In conclusion, our study provides a global interactome of the DENV NS1 and identifies host factors targetable for antiviral therapies.


Subject(s)
Dengue Virus/metabolism , Host-Pathogen Interactions , Protein Interaction Maps , Viral Nonstructural Proteins/metabolism , Dengue/virology , Glycosylation , HEK293 Cells , HeLa Cells , Humans , Multiprotein Complexes/metabolism , Neoplasm Proteins/metabolism , RNA, Small Interfering/metabolism , Receptors for Activated C Kinase/metabolism , Virus Replication
6.
Cell Rep ; 18(2): 324-333, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28076778

ABSTRACT

ZIKA virus (ZIKV) is an emerging pathogen responsible for neurological disorders and congenital microcephaly. However, the molecular basis for ZIKV neurotropism remains poorly understood. Here, we show that Axl is expressed in human microglia and astrocytes in the developing brain and that it mediates ZIKV infection of glial cells. Axl-mediated ZIKV entry requires the Axl ligand Gas6, which bridges ZIKV particles to glial cells. Following binding, ZIKV is internalized through clathrin-mediated endocytosis and traffics to Rab5+ endosomes to establish productive infection. During entry, the ZIKV/Gas6 complex activates Axl kinase activity, which downmodulates interferon signaling and facilitates infection. ZIKV infection of human glial cells is inhibited by MYD1, an engineered Axl decoy receptor, and by the Axl kinase inhibitor R428. Our results highlight the dual role of Axl during ZIKV infection of glial cells: promoting viral entry and modulating innate immune responses. Therefore, inhibiting Axl function may represent a potential target for future antiviral therapies.


Subject(s)
Immunity, Innate , Neuroglia/metabolism , Neuroglia/virology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Virus Internalization , Zika Virus/physiology , Brain/embryology , Brain/metabolism , Clathrin/metabolism , Endocytosis , Endosomes/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Interferon Type I/metabolism , Neuroglia/pathology , Signal Transduction , Zika Virus Infection/pathology , Zika Virus Infection/virology , Axl Receptor Tyrosine Kinase
7.
mBio ; 7(1): e01956-15, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26861019

ABSTRACT

UNLABELLED: The live attenuated yellow fever virus (YFV) vaccine 17D stands as a "gold standard" for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. IMPORTANCE: The yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry pathways. We show that the mutations differentiating the Asibi envelope (E) protein from the 17D E protein, which arose during attenuation, are key determinants for the use of these distinct entry routes. Finally, we demonstrate that 17D binds and enters host cells more efficiently than Asibi. This results in a higher uptake of viral RNA into the cytoplasm and consequently a greater cytokine-mediated antiviral response. Overall, our data provide new insights into the biology of YFV infection and the mechanisms of viral attenuation.


Subject(s)
Immunity, Innate , Virus Internalization , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology , Yellow fever virus/physiology , Cell Line , Endocytosis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL