ABSTRACT
The 14-3-3 protein family binds and regulates hundreds of serine/threonine phosphorylated proteins as an essential component of many signaling networks. Specific biological functions are currently been discovered for each of its seven isoforms in mammals. These proteins have been traditionally considered unregulated; however, its acetylation in an essential lysine residue, causing its inactivation, was recently published. Here, we studied the acetylation state of this lysine 49/51 during the osteogenic differentiation of human adipose-derived stem cells. We found that during this process, the levels of 14-3-3ß (but not its isoform 14-3-3γ) acK49/51 increase, representing the first report linking this PTM to a specific isoform and a cellular process. Our results suggested that this posttranslational modification could be catalyzed by the HBO1 acetyltransferase, as overexpression of HBO1 increased specifically 14-3-3 acK49/51 acetylation. Acetylated 14-3-3 proteins are located primarily in the nucleus, where their active state has been described to bind H3 histones and many transcription factors. The inhibition of the expression of different isoforms showed that the specific silencing of the 14-3-3ß gene, but not γ, increased significantly the osteogenic potential of the cells. This result correlated to the increase in acetylation of 14-3- 3ß Lys 49/51 during osteogenesis. The possible role of this PTM in osteogenesis is discussed.
Subject(s)
14-3-3 Proteins/metabolism , Cell Differentiation , Osteogenesis , Stem Cells/metabolism , 3T3-L1 Cells , Acetylation , Animals , Humans , Mice , NIH 3T3 CellsABSTRACT
The SARS-CoV-2 N protein binds several cell host proteins including 14-3-3γ, a well-characterized regulatory protein. However, the biological function of this interaction is not completely understood. We analyzed the variability of â¼90 000 sequences of the SARS-CoV-2 N protein, particularly, its mutations in disordered regions containing binding motifs for 14-3-3 proteins. We studied how these mutations affect the binding energy to 14-3-3γ and found that changes positively affecting the predicted interaction with 14-3-3γ are the most successfully spread, with the highest prevalence in the phylogenetic tree. Although most residues are highly conserved within the 14-3-3 binding site, compensatory mutations to maintain the interaction energy of N-14-3-3γ were found, including half of the current variants of concern and interest. Our results suggest that binding of N to 14-3-3γ is beneficial for the virus, thus targeting this viral-host protein-protein interaction seems an attractive approach to explore antiviral strategies.