Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 55(5): 895-911.e10, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35483356

ABSTRACT

Different effector arms of the immune system are optimized to protect from different classes of pathogens. In some cases, pathogens manipulate the host immune system to promote the wrong type of effector response-a phenomenon known as immune deviation. Typically, immune deviation helps pathogens to avoid destructive immune responses. Here, we report on a type of immune deviation whereby an opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), induces the type 2 immune response resulting in mucin production that is used as an energy source by the pathogen. Specifically, P. aeruginosa-secreted toxin, LasB, processed and activated epithelial amphiregulin to induce type 2 inflammation and mucin production. This "niche remodeling" by P. aeruginosa promoted colonization and, as a by-product, allergic sensitization. Our study thus reveals a type of bacterial immune deviation by increasing nutrient supply. It also uncovers a mechanism of allergic sensitization by a bacterial virulence factor.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Bacterial Proteins , Humans , Inflammation , Mucins
2.
Immunity ; 54(5): 1083-1095.e7, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33891889

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV-2 infection. We profiled MIS-C, adult COVID-19, and healthy pediatric and adult individuals using single-cell RNA sequencing, flow cytometry, antigen receptor repertoire analysis, and unbiased serum proteomics, which collectively identified a signature in MIS-C patients that correlated with disease severity. Despite having no evidence of active infection, MIS-C patients had elevated S100A-family alarmins and decreased antigen presentation signatures, indicative of myeloid dysfunction. MIS-C patients showed elevated expression of cytotoxicity genes in NK and CD8+ T cells and expansion of specific IgG-expressing plasmablasts. Clinically severe MIS-C patients displayed skewed memory T cell TCR repertoires and autoimmunity characterized by endothelium-reactive IgG. The alarmin, cytotoxicity, TCR repertoire, and plasmablast signatures we defined have potential for application in the clinic to better diagnose and potentially predict disease severity early in the course of MIS-C.


Subject(s)
COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/pathology , Adolescent , Alarmins/immunology , Autoantibodies/immunology , CD8-Positive T-Lymphocytes/immunology , Child , Child, Preschool , Cytotoxicity, Immunologic/genetics , Endothelium/immunology , Endothelium/pathology , Humans , Killer Cells, Natural/immunology , Myeloid Cells/immunology , Plasma Cells/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index
3.
Nature ; 623(7985): 139-148, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37748514

ABSTRACT

Post-acute infection syndromes may develop after acute viral disease1. Infection with SARS-CoV-2 can result in the development of a post-acute infection syndrome known as long COVID. Individuals with long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions2-4. However, the biological processes that are associated with the development and persistence of these symptoms are unclear. Here 275 individuals with or without long COVID were enrolled in a cross-sectional study that included multidimensional immune phenotyping and unbiased machine learning methods to identify biological features associated with long COVID. Marked differences were noted in circulating myeloid and lymphocyte populations relative to the matched controls, as well as evidence of exaggerated humoral responses directed against SARS-CoV-2 among participants with long COVID. Furthermore, higher antibody responses directed against non-SARS-CoV-2 viral pathogens were observed among individuals with long COVID, particularly Epstein-Barr virus. Levels of soluble immune mediators and hormones varied among groups, with cortisol levels being lower among participants with long COVID. Integration of immune phenotyping data into unbiased machine learning models identified the key features that are most strongly associated with long COVID status. Collectively, these findings may help to guide future studies into the pathobiology of long COVID and help with developing relevant biomarkers.


Subject(s)
Antibodies, Viral , Herpesvirus 4, Human , Hydrocortisone , Lymphocytes , Myeloid Cells , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , Biomarkers/blood , Cross-Sectional Studies , Herpesvirus 4, Human/immunology , Hydrocortisone/blood , Immunophenotyping , Lymphocytes/immunology , Machine Learning , Myeloid Cells/immunology , Post-Acute COVID-19 Syndrome/diagnosis , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/physiopathology , Post-Acute COVID-19 Syndrome/virology , SARS-CoV-2/immunology
4.
Proc Natl Acad Sci U S A ; 121(18): e2319566121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648490

ABSTRACT

Respiratory virus infections in humans cause a broad-spectrum of diseases that result in substantial morbidity and mortality annually worldwide. To reduce the global burden of respiratory viral diseases, preventative and therapeutic interventions that are accessible and effective are urgently needed, especially in countries that are disproportionately affected. Repurposing generic medicine has the potential to bring new treatments for infectious diseases to patients efficiently and equitably. In this study, we found that intranasal delivery of neomycin, a generic aminoglycoside antibiotic, induces the expression of interferon-stimulated genes (ISGs) in the nasal mucosa that is independent of the commensal microbiota. Prophylactic or therapeutic administration of neomycin provided significant protection against upper respiratory infection and lethal disease in a mouse model of COVID-19. Furthermore, neomycin treatment protected Mx1 congenic mice from upper and lower respiratory infections with a highly virulent strain of influenza A virus. In Syrian hamsters, neomycin treatment potently mitigated contact transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In healthy humans, intranasal application of neomycin-containing Neosporin ointment was well tolerated and effective at inducing ISG expression in the nose in a subset of participants. These findings suggest that neomycin has the potential to be harnessed as a host-directed antiviral strategy for the prevention and treatment of respiratory viral infections.


Subject(s)
Administration, Intranasal , Antiviral Agents , Neomycin , SARS-CoV-2 , Animals , Neomycin/pharmacology , Neomycin/administration & dosage , Mice , Humans , Antiviral Agents/pharmacology , Antiviral Agents/administration & dosage , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/virology , Respiratory Tract Infections/prevention & control , Nasal Mucosa/immunology , Nasal Mucosa/virology , Nasal Mucosa/drug effects , Disease Models, Animal , COVID-19 Drug Treatment , Mesocricetus , Female , Influenza A virus/drug effects , Influenza A virus/immunology
5.
Nature ; 573(7772): 69-74, 2019 09.
Article in English | MEDLINE | ID: mdl-31435009

ABSTRACT

Direct recognition of invading pathogens by innate immune cells is a critical driver of the inflammatory response. However, cells of the innate immune system can also sense their local microenvironment and respond to physiological fluctuations in temperature, pH, oxygen and nutrient availability, which are altered during inflammation. Although cells of the immune system experience force and pressure throughout their life cycle, little is known about how these mechanical processes regulate the immune response. Here we show that cyclical hydrostatic pressure, similar to that experienced by immune cells in the lung, initiates an inflammatory response via the mechanically activated ion channel PIEZO1. Mice lacking PIEZO1 in innate immune cells showed ablated pulmonary inflammation in the context of bacterial infection or fibrotic autoinflammation. Our results reveal an environmental sensory axis that stimulates innate immune cells to mount an inflammatory response, and demonstrate a physiological role for PIEZO1 and mechanosensation in immunity.


Subject(s)
Hydrostatic Pressure , Immunity, Innate , Ion Channels/metabolism , Mechanotransduction, Cellular/immunology , Animals , Endothelin-1/metabolism , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , JNK Mitogen-Activated Protein Kinases/metabolism , Lung/immunology , Lung/metabolism , Lung/microbiology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Signal Transduction
6.
Article in English | MEDLINE | ID: mdl-38717443

ABSTRACT

RATIONALE: Changes in peripheral blood cell populations have been observed but not detailed at single-cell resolution in idiopathic pulmonary fibrosis (IPF). OBJECTIVES: To provide an atlas of the changes in the peripheral immune system in stable and progressive IPF. METHODS: Peripheral blood mononuclear cells (PBMCs) from IPF patients and controls were profiled using 10x Chromium 5' single-cell RNA sequencing (scRNA-seq). Flow cytometry was used for validation. Protein concentrations of Regulatory T-cells (Tregs) and Monocytes chemoattractants were measured in plasma and lung homogenates from patients and controls. MEASUREMENTS AND MAIN RESULTS: Thirty-eight PBMC samples from 25 patients with IPF and 13 matched controls yielded 149,564 cells that segregated into 23 subpopulations. Classical monocytes were increased in progressive and stable IPF compared to controls (32.1%, 25.2%, 17.9%, respectively, p<0.05). Total lymphocytes were decreased in IPF vs controls, and in progressive vs stable IPF (52.6% vs 62.6%, p=0.035). Tregs were increased in progressive vs stable IPF (1.8% vs 1.1% of all PBMC, p=0.007), although not different than controls, and may be associated with decreased survival (P=0.009 in Kaplan-Meier analysis; P=0.069 after adjusting for age, sex, and baseline FVC). Flow cytometry analysis confirmed this finding in an independent cohort of IPF patients. Fraction of Tregs out of all T cells was also increased in two cohorts of lung scRNA-seq. CCL22 and CCL18, ligands for CCR4 and CCR8 Treg chemotaxis receptors, were increased in IPF. CONCLUSIONS: The single-cell atlas of the peripheral immune system in IPF, reveals an outcome-predictive increase in classical monocytes and Tregs, as well as evidence for a lung-blood immune recruitment axis involving CCL7 (for classical monocytes) and CCL18/CCL22 (for Tregs).

7.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L551-L561, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38375579

ABSTRACT

Excessive or persistent inflammation may have detrimental effects on lung structure and function. Currently, our understanding of conserved host mechanisms that control the inflammatory response remains incompletely understood. In this study, we investigated the role of type I interferon signaling in the inflammatory response against diverse clinically relevant stimuli. Using mice deficient in type I interferon signaling (IFNAR1-/-), we demonstrate that the absence of interferon signaling resulted in a robust and persistent inflammatory response against Pseudomonas aeruginosa, lipopolysaccharide, and chemotherapeutic agent bleomycin. The elevated inflammatory response in IFNAR1-/- mice was manifested as elevated myeloid cells, such as macrophages and neutrophils, in the bronchoalveolar lavage. The inflammatory cell response in the IFNAR1-/- mice persisted to 14 days and there is impaired recovery and fibrotic remodeling of the lung in IFNAR1-/- mice after bleomycin injury. In the Pseudomonas infection model, the elevated inflammatory cell response led to improved bacterial clearance in IFNAR1-/- mice, although there was similar lung injury and survival. We performed RNA sequencing of lung tissue in wild-type and IFNAR1-/- mice after LPS and bleomycin injury. Our unbiased analysis identified differentially expressed genes between IFNAR1-/- and wild-type mice, including previously unknown regulation of nucleotide-binding oligomerization domain (NOD)-like receptor signaling, retinoic acid-inducible gene-I (RIG-I) signaling, and necroptosis pathway by type I interferon signaling in both models. These data provide novel insights into the conserved anti-inflammatory mechanisms of the type I interferon signaling.NEW & NOTEWORTHY Type I interferons are known for their antiviral activities. In this study, we demonstrate a conserved anti-inflammatory role of type I interferon signaling against diverse stimuli in the lung. We show that exacerbated inflammatory response in the absence of type I interferon signaling has both acute and chronic consequences in the lung including structural changes.


Subject(s)
Interferon Type I , Lung , Mice, Inbred C57BL , Mice, Knockout , Receptor, Interferon alpha-beta , Signal Transduction , Animals , Interferon Type I/metabolism , Lung/metabolism , Lung/immunology , Lung/pathology , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Mice , Bleomycin , Pseudomonas aeruginosa , Lipopolysaccharides/pharmacology , Pseudomonas Infections/immunology , Pseudomonas Infections/metabolism , Pseudomonas Infections/pathology , Pseudomonas Infections/microbiology , Inflammation/metabolism , Inflammation/pathology , Inflammation/immunology , Male
8.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L627-L637, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38375577

ABSTRACT

Pulmonary function testing (PFT) in mice includes biomechanical assessment of lung function relevant to physiology in health and its alteration in disease, hence, it is frequently used in preclinical modeling of human lung pathologies. Despite numerous reports of PFT in mice of various ages, there is a lack of reference data for developing mice collected using consistent methods. Therefore, we profiled PFTs in male and female C57BL/6J mice from 2 to 23 wk of age, providing reference values for age- and sex-dependent changes in mouse lung biomechanics during development and young adulthood. Although males and females have similar weights at birth, females weigh significantly less than males after 5 wk of age (P < 0.001) with largest weight gain observed between 3 and 8 wk in females and 3 and 13 wk in males, after which weight continued to increase more slowly up to 23 wk of age. Lung function parameters including static compliance and inspiratory capacity also increased rapidly between 3 and 8 wk in female and male mice, with male mice having significantly greater static compliance and inspiratory capacity than female mice (P < 0.001). Although these parameters appear higher in males at a given age, allometric scaling showed that static compliance and inspiratory compliance were comparable between the two sexes. This suggests that differences in measurements of lung function are likely body weight-based rather than sex-based. We expect these data to facilitate future lung disease research by filling a critical knowledge gap in our field.NEW & NOTEWORTHY This study provides reference values for changes in mouse lung biomechanics from 2 to 23 wk of age. There are rapid developmental changes in lung structure and function of male and female mice between the ages of 3 and 8 wk. Male mice become noticeably heavier than female mice at or about 5 wk of age. We identified that differences in normal lung function measurements are likely weight-based, not sex-based.


Subject(s)
Lung , Mice, Inbred C57BL , Respiratory Function Tests , Animals , Female , Male , Lung/growth & development , Mice , Body Weight , Sex Characteristics , Sex Factors , Aging/physiology
9.
J Immunol ; 209(7): 1314-1322, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36165196

ABSTRACT

Postviral bacterial infections are a major health care challenge in coronavirus infections, including COVID-19; however, the coronavirus-specific mechanisms of increased host susceptibility to secondary infections remain unknown. In humans, coronaviruses, including SARS-CoV-2, infect lung immune cells, including alveolar macrophages, a phenotype poorly replicated in mouse models of SARS-CoV-2. To overcome this, we used a mouse model of native murine ß-coronavirus that infects both immune and structural cells to investigate coronavirus-enhanced susceptibility to bacterial infections. Our data show that coronavirus infection impairs the host ability to clear invading bacterial pathogens and potentiates lung tissue damage in mice. Mechanistically, coronavirus limits the bacterial killing ability of macrophages by impairing lysosomal acidification and fusion with engulfed bacteria. In addition, coronavirus-induced lysosomal dysfunction promotes pyroptotic cell death and the release of IL-1ß. Inhibition of cathepsin B decreased cell death and IL-1ß release and promoted bacterial clearance in mice with postcoronavirus bacterial infection.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Murine hepatitis virus , Animals , Bacteria , Cathepsin B , Humans , Lung , Lysosomes , Mice , SARS-CoV-2
10.
J Virol ; 96(2): e0124121, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34705554

ABSTRACT

Coronaviruses are a major health care threat to humankind. Currently, the host factors that contribute to limit disease severity in healthy young patients are not well defined. Interferons are key antiviral molecules, especially type I and type III interferons. The role of these interferons during coronavirus disease is a subject of debate. Here, using mice that are deficient in type I (IFNAR1-/-), type III (IFNLR1-/-), or both (IFNAR1/LR1-/-) interferon signaling pathways and murine-adapted coronavirus (MHV-A59) administered through the intranasal route, we define the role of interferons in coronavirus infection. We show that type I interferons play a major role in host survival in this model, while a minimal role of type III interferons was manifested only in the absence of type I interferons or during a lethal dose of coronavirus. IFNAR1-/- and IFNAR1/LR1-/- mice had an uncontrolled viral burden in the airways and lung and increased viral dissemination to other organs. The absence of only type III interferon signaling had no measurable difference in the viral load. The increased viral load in IFNAR1-/- and IFNAR1/LR1-/- mice was associated with increased tissue injury, especially evident in the lung and liver. Type I but not type III interferon treatment was able to promote survival if treated during early disease. Further, we show that type I interferon signaling in macrophages contributes to the beneficial effects during coronavirus infection in mice. IMPORTANCE The antiviral and pathological potential of type I and type III interferons during coronavirus infection remains poorly defined, and opposite findings have been reported. We report that both type I and type III interferons have anticoronaviral activities, but their potency and organ specificity differ. Type I interferon deficiency rendered the mice susceptible to even a sublethal murine coronavirus infection, while the type III interferon deficiency impaired survival only during a lethal infection or during a sublethal infection in the absence of type I interferon signaling. While treatment with both type I and III interferons promoted viral clearance in the airways and lung, only type I interferons promoted the viral clearance in the liver and improved host survival upon early treatment (12 h postinfection). This study demonstrates distinct roles and potency of type I and type III interferons and their therapeutic potential during coronavirus lung infection.


Subject(s)
Coronavirus Infections/immunology , Interferon Type I/immunology , Interferons/immunology , Lung , Animals , Female , Lung/immunology , Lung/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Interferon Lambda
11.
PLoS Pathog ; 17(6): e1009683, 2021 06.
Article in English | MEDLINE | ID: mdl-34166473

ABSTRACT

COVID-19 is a global crisis of unimagined dimensions. Currently, Remedesivir is only fully licensed FDA therapeutic. A major target of the vaccine effort is the SARS-CoV-2 spike-hACE2 interaction, and assessment of efficacy relies on time consuming neutralization assay. Here, we developed a cell fusion assay based upon spike-hACE2 interaction. The system was tested by transient co-transfection of 293T cells, which demonstrated good correlation with standard spike pseudotyping for inhibition by sera and biologics. Then established stable cell lines were very well behaved and gave even better correlation with pseudotyping results, after a short, overnight co-incubation. Results with the stable cell fusion assay also correlated well with those of a live virus assay. In summary we have established a rapid, reliable, and reproducible cell fusion assay that will serve to complement the other neutralization assays currently in use, is easy to implement in most laboratories, and may serve as the basis for high throughput screens to identify inhibitors of SARS-CoV-2 virus-cell binding and entry.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Biological Assay/methods , COVID-19/virology , Receptors, Coronavirus/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/blood , Cell Fusion , HEK293 Cells , Humans , Receptors, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Transfection , Virus Attachment
12.
PLoS Biol ; 18(10): e3000867, 2020 10.
Article in English | MEDLINE | ID: mdl-33027248

ABSTRACT

The current quantitative reverse transcription PCR (RT-qPCR) assay recommended for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing in the United States requires analysis of 3 genomic targets per sample: 2 viral and 1 host. To simplify testing and reduce the volume of required reagents, we devised a multiplex RT-qPCR assay to detect SARS-CoV-2 in a single reaction. We used existing N1, N2, and RP primer and probe sets by the Centers for Disease Control and Prevention, but substituted fluorophores to allow multiplexing of the assay. The cycle threshold (Ct) values of our multiplex RT-qPCR were comparable to those obtained by the single assay adapted for research purposes. Low copy numbers (≥500 copies/reaction) of SARS-CoV-2 RNA were consistently detected by the multiplex RT-qPCR. Our novel multiplex RT-qPCR improves upon current single diagnostics by saving reagents, costs, time, and labor.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Multiplex Polymerase Chain Reaction/standards , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Reagent Kits, Diagnostic/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Case-Control Studies , Clinical Laboratory Techniques/standards , Coronavirus Infections/virology , DNA Primers/standards , HEK293 Cells , Humans , Limit of Detection , Nasopharynx/virology , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , United States
13.
J Immunol ; 206(2): 329-334, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33277388

ABSTRACT

The COVID-19 pandemic has affected more than 20 million people worldwide, with mortality exceeding 800,000 patients. Risk factors associated with severe disease and mortality include advanced age, hypertension, diabetes, and obesity. Each of these risk factors pathologically disrupts the lipidome, including immunomodulatory eicosanoid and docosanoid lipid mediators (LMs). We hypothesized that dysregulation of LMs may be a defining feature of the severity of COVID-19. By examining LMs and polyunsaturated fatty acid precursor lipids in serum from hospitalized COVID-19 patients, we demonstrate that moderate and severe disease are separated by specific differences in abundance of immune-regulatory and proinflammatory LMs. This difference in LM balance corresponded with decreased LM products of ALOX12 and COX2 and an increase LMs products of ALOX5 and cytochrome p450. Given the important immune-regulatory role of LMs, these data provide mechanistic insight into an immuno-lipidomic imbalance in severe COVID-19.


Subject(s)
COVID-19 , Eicosanoids , Lipidomics , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Arachidonate 12-Lipoxygenase/immunology , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 5-Lipoxygenase/immunology , Arachidonate 5-Lipoxygenase/metabolism , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , Cyclooxygenase 2/immunology , Cyclooxygenase 2/metabolism , Eicosanoids/blood , Eicosanoids/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
14.
J Immunol ; 206(12): 2785-2790, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34049971

ABSTRACT

Protective immunity against COVID-19 likely depends on the production of SARS-CoV-2-specific plasma cells and memory B cells postinfection or postvaccination. Previous work has found that germinal center reactions are disrupted in severe COVID-19. This may adversely affect long-term immunity against reinfection. Consistent with an extrafollicular B cell response, patients with severe COVID-19 have elevated frequencies of clonally expanded, class-switched, unmutated plasmablasts. However, it is unclear whether B cell populations in individuals with mild COVID-19 are similarly skewed. In this study, we use single-cell RNA sequencing of B cells to show that in contrast to patients with severe COVID-19, subjects with mildly symptomatic COVID-19 have B cell repertoires enriched for clonally diverse, somatically hypermutated memory B cells ∼30 d after the onset of symptoms. This provides evidence that B cell responses are less disrupted in mild COVID-19 and result in the production of memory B cells.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Cohort Studies , Humans , SARS-CoV-2/immunology
15.
Semin Respir Crit Care Med ; 44(1): 100-117, 2023 02.
Article in English | MEDLINE | ID: mdl-36646089

ABSTRACT

Coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality in pandemic proportions. Inflammation in response to the infection contributes to the pathogenesis of pneumonia. This review will discuss prior studies on the use of glucocorticoids to treat respiratory infections, the rationale for the use glucocorticoids in COVID-19, and review of existing data. We will also highlight outstanding research questions for future studies.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Glucocorticoids/therapeutic use , Inflammation
16.
Am J Respir Crit Care Med ; 206(12): 1463-1479, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35998281

ABSTRACT

Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two U.S. Food and Drug Administration-approved antifibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Objectives: Using an in silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. Methods: We investigated the antifibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: 1) in vitro in normal human lung fibroblasts; 2) in vivo in bleomycin and recombinant Ad-TGF-ß (adenovirus transforming growth factor-ß) murine models of pulmonary fibrosis; and 3) ex vivo in mice and human precision-cut lung slices from these two murine models as well as patients with IPF and healthy donors. Measurements and Main Results: In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone. Transcriptomic analyses of TGF-ß-stimulated normal human lung fibroblasts identified specific gene sets associated with fibrosis, including epithelial-mesenchymal transition, TGF-ß, and WNT signaling that was uniquely altered by saracatinib. Transcriptomic analysis of whole-lung extracts from the two animal models of pulmonary fibrosis revealed that saracatinib reverted many fibrogenic pathways, including epithelial-mesenchymal transition, immune responses, and extracellular matrix organization. Amelioration of fibrosis and inflammatory cascades in human precision-cut lung slices confirmed the potential therapeutic efficacy of saracatinib in human lung fibrosis. Conclusions: These studies identify novel Src-dependent fibrogenic pathways and support the study of the therapeutic effectiveness of saracatinib in IPF treatment.


Subject(s)
Idiopathic Pulmonary Fibrosis , Protein Kinase Inhibitors , Animals , Humans , Mice , Bleomycin/adverse effects , Fibroblasts/metabolism , Fibrosis , Idiopathic Pulmonary Fibrosis/drug therapy , Lung/pathology , Protein Kinase Inhibitors/therapeutic use , src-Family Kinases/metabolism , Transforming Growth Factor beta/metabolism
17.
Am J Respir Cell Mol Biol ; 66(2): 137-145, 2022 02.
Article in English | MEDLINE | ID: mdl-34644520

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a debilitating disease in premature infants resulting from lung injury that disrupts alveolar and pulmonary vascular development. Despite the use of lung-protective ventilation and targeted oxygen therapy, BPD rates have not significantly changed over the last decade. Recent evidence suggests that sepsis and conditions initiating the systemic inflammatory response syndrome in preterm infants are key risk factors for BPD. However, the mechanisms by which sepsis-associated systemic inflammation and microbial dissemination program aberrant lung development are not fully understood. Progress has been made within the last 5 years with the inception of animal models allowing mechanistic investigations into neonatal acute lung injury and alveolar remodeling attributable to endotoxemia and necrotizing enterocolitis. These recent studies begin to unravel the pathophysiology of early endothelial immune activation via pattern recognition receptors such as Toll-like receptor 4 and disruption of critical lung developmental processes such as angiogenesis, extracellular matrix deposition, and ultimately alveologenesis. Here we review scientific evidence from preclinical models of neonatal sepsis-induced lung injury to new data emerging from clinical literature.


Subject(s)
Bronchopulmonary Dysplasia/etiology , Infant, Newborn, Diseases/physiopathology , Infant, Premature, Diseases/physiopathology , Sepsis/complications , Systemic Inflammatory Response Syndrome/complications , Bronchopulmonary Dysplasia/pathology , Humans , Infant, Newborn , Infant, Premature
18.
Am J Respir Cell Mol Biol ; 66(2): e1-e14, 2022 02.
Article in English | MEDLINE | ID: mdl-35103557

ABSTRACT

Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.


Subject(s)
Acute Lung Injury/pathology , Inflammation/physiopathology , Research Report/trends , Acute Lung Injury/immunology , Animals
19.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L518-L525, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35196896

ABSTRACT

Sarcoidosis is a chronic granulomatous disease of unknown etiology that primarily affects the lungs. The development of stage IV or fibrotic lung disease accounts for a significant proportion of the morbidity and mortality attributable to sarcoidosis. Further investigation into the active mechanisms of disease pathogenesis and fibrogenesis might illuminate fundamental mediators of injury and repair while providing new opportunities for clinical intervention. However, progress in sarcoidosis research has been hampered by the heterogeneity of clinical phenotypes and the lack of a consensus modeling system. Recently, reverse translational research, wherein observations made at the patient level catalyze hypothesis-driven research at the laboratory bench, has generated new discoveries regarding the immunopathogenic mechanisms of pulmonary granuloma formation, fibrogenesis, and disease model development. The purpose of this review is to highlight the promise and possibility of these novel investigative efforts.


Subject(s)
Pulmonary Fibrosis , Sarcoidosis , Granuloma/pathology , Humans , Lung/pathology , Pulmonary Fibrosis/pathology , Sarcoidosis/pathology , Translational Research, Biomedical
20.
Lancet ; 398(10303): 906-919, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34481570

ABSTRACT

Community-acquired pneumonia is not usually considered a high-priority problem by the public, although it is responsible for substantial mortality, with a third of patients dying within 1 year after being discharged from hospital for pneumoniae. Although up to 18% of patients with community-acquired pneumonia who were hospitalised (admitted to hospital and treated there) have at least one risk factor for immunosuppression worldwide, strong evidence on community-acquired pneumonia management in this population is scarce. Several features of clinical management for community-acquired pneumonia should be addressed to reduce mortality, morbidity, and complications related to community-acquired pneumonia in patients who are immunocompetent and patients who are immunocompromised. These features include rapid diagnosis, microbiological investigation, prevention and management of complications (eg, respiratory failure, sepsis, and multiorgan failure), empirical antibiotic therapy in accordance with patient's risk factors and local microbiological epidemiology, individualised antibiotic therapy according to microbiological data, appropriate outcomes for therapeutic switch from parenteral to oral antibiotics, discharge planning, and long-term follow-up. This Seminar offers an updated view on community-acquired pneumonia in adults, with suggestions for clinical and translational research.


Subject(s)
Community-Acquired Infections/diagnosis , Community-Acquired Infections/mortality , Adult , Anti-Bacterial Agents/therapeutic use , Community-Acquired Infections/drug therapy , Community-Acquired Infections/prevention & control , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Pneumonia/mortality , Risk Factors , Severity of Illness Index , Tomography, X-Ray Computed , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL