Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nutrients ; 16(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474713

ABSTRACT

The food insulin index (FII) is a novel algorithm used to determine insulin responses of carbohydrates, proteins, and fats. This scoping review aimed to provide an overview of all scientifically relevant information presented on the application of the FII in the prevention and management of insulin resistance and diabetes. The Arksey and O'Malley framework and the PRISMA Extension for Scoping Reviews 22-item checklist were used to ensure that all areas were covered in the scoping review. Our search identified 394 articles, of which 25 articles were included. Three main themes emerged from the included articles: 1. the association of FII with the development of metabolic syndrome, insulin resistance, and diabetes, 2. the comparison of FII with carbohydrate counting (CC) for the prediction of postprandial insulin response, and 3. the effect of metabolic status on the FII. Studies indicated that the FII can predict postprandial insulin response more accurately than CC, and that a high DII and DIL diet is associated with the development of metabolic syndrome, insulin resistance, and diabetes. The FII could be a valuable tool to use in the prevention and management of T1DM, insulin resistance, and T2DM, but more research is needed in this field.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Metabolic Syndrome , Humans , Insulin , Food
2.
Nutrients ; 13(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34579120

ABSTRACT

The glycaemic index (GI) is a food metric that ranks the acute impact of available (digestible) carbohydrates on blood glucose. At present, few countries regulate the inclusion of GI on food labels even though the information may assist consumers to manage blood glucose levels. Australia and New Zealand regulate GI claims as nutrition content claims and also recognize the GI Foundation's certified Low GI trademark as an endorsement. The GI Foundation of South Africa endorses foods with low, medium and high GI symbols. In Asia, Singapore's Healthier Choice Symbol has specific provisions for low GI claims. Low GI claims are also permitted on food labels in India. In China, there are no national regulations specific to GI; however, voluntary claims are permitted. In the USA, GI claims are not specifically regulated but are permitted, as they are deemed to fall under general food-labelling provisions. In Canada and the European Union, GI claims are not legal under current food law. Inconsistences in food regulation around the world undermine consumer and health professional confidence and call for harmonization. Global provisions for GI claims/endorsements in food standard codes would be in the best interests of people with diabetes and those at risk.


Subject(s)
Diet , Food Analysis , Global Health , Glycemic Index , Food Labeling , Humans
3.
Am J Clin Nutr ; 87(1): 247S-257S, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18175765

ABSTRACT

BACKGROUND: Many laboratories offer glycemic index (GI) services. OBJECTIVE: We assessed the performance of the method used to measure GI. DESIGN: The GI of cheese-puffs and fruit-leather (centrally provided) was measured in 28 laboratories (n=311 subjects) by using the FAO/WHO method. The laboratories reported the results of their calculations and sent the raw data for recalculation centrally. RESULTS: Values for the incremental area under the curve (AUC) reported by 54% of the laboratories differed from central calculations. Because of this and other differences in data analysis, 19% of reported food GI values differed by >5 units from those calculated centrally. GI values in individual subjects were unrelated to age, sex, ethnicity, body mass index, or AUC but were negatively related to within-individual variation (P=0.033) expressed as the CV of the AUC for repeated reference food tests (refCV). The between-laboratory GI values (mean+/-SD) for cheese-puffs and fruit-leather were 74.3+/-10.5 and 33.2+/-7.2, respectively. The mean laboratory GI was related to refCV (P=0.003) and the type of restrictions on alcohol consumption before the test (P=0.006, r2=0.509 for model). The within-laboratory SD of GI was related to refCV (P<0.001), the glucose analysis method (P=0.010), whether glucose measures were duplicated (P=0.008), and restrictions on dinner the night before (P=0.013, r2=0.810 for model). CONCLUSIONS: The between-laboratory SD of the GI values is approximately 9. Standardized data analysis and low within-subject variation (refCV<30%) are required for accuracy. The results suggest that common misconceptions exist about which factors do and do not need to be controlled to improve precision. Controlled studies and cost-benefit analyses are needed to optimize GI methodology. The trial was registered at clinicaltrials.gov as NCT00260858.


Subject(s)
Clinical Laboratory Techniques/standards , Dietary Carbohydrates/metabolism , Food Analysis/standards , Food/classification , Glycemic Index , Adolescent , Adult , Aged , Area Under Curve , Blood Glucose/metabolism , Cross-Over Studies , Female , Glucose Tolerance Test , Humans , Male , Middle Aged , Reference Values , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL