Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 173(1): 276-276.e1, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29570996

ABSTRACT

CGAS responds to cytosolic DNA by initiating a STING-dependent response that ultimately engages innate immune effectors to ensure the preservation of organismal homeostasis.


Subject(s)
Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Cellular Microenvironment , Humans , Immunity, Innate , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , NF-kappaB-Inducing Kinase
2.
Mol Cell ; 83(20): 3582-3587, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37863025

ABSTRACT

In recent years, increasing evidence has highlighted the profound connection between DNA damage repair and the activation of immune responses. We spoke with researchers about their mechanistic interplays and the implications for cancer and other diseases.


Subject(s)
DNA Damage , DNA Repair , Signal Transduction , Immunity
3.
J Pathol ; 262(3): 271-288, 2024 03.
Article in English | MEDLINE | ID: mdl-38230434

ABSTRACT

Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Breast Neoplasms , Humans , Female , Biomarkers, Tumor/genetics , Prognosis , Phenotype , United Kingdom , Tumor Microenvironment
4.
Trends Immunol ; 42(4): 275-277, 2021 04.
Article in English | MEDLINE | ID: mdl-33637449

ABSTRACT

Allogeneic liver transplants tolerize the immune system, preventing organ rejection from the same donor. A recent article by Yu et al. shows that liver metastases can likewise prevent tumor rejection in immunotherapy-treated murine and human hosts. Furthermore, radiation can reprogram the liver microenvironment to restore systemic tumor rejection.


Subject(s)
Liver Neoplasms , T-Lymphocytes , Animals , Humans , Immunotherapy , Liver Neoplasms/therapy , Macrophages , Mice , Tumor Microenvironment
5.
J Pathol ; 260(5): 514-532, 2023 08.
Article in English | MEDLINE | ID: mdl-37608771

ABSTRACT

Modern histologic imaging platforms coupled with machine learning methods have provided new opportunities to map the spatial distribution of immune cells in the tumor microenvironment. However, there exists no standardized method for describing or analyzing spatial immune cell data, and most reported spatial analyses are rudimentary. In this review, we provide an overview of two approaches for reporting and analyzing spatial data (raster versus vector-based). We then provide a compendium of spatial immune cell metrics that have been reported in the literature, summarizing prognostic associations in the context of a variety of cancers. We conclude by discussing two well-described clinical biomarkers, the breast cancer stromal tumor infiltrating lymphocytes score and the colon cancer Immunoscore, and describe investigative opportunities to improve clinical utility of these spatial biomarkers. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Colonic Neoplasms , Humans , Biomarkers , Benchmarking , Lymphocytes, Tumor-Infiltrating , Spatial Analysis , Tumor Microenvironment
6.
J Pathol ; 260(5): 498-513, 2023 08.
Article in English | MEDLINE | ID: mdl-37608772

ABSTRACT

The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Mammary Neoplasms, Animal , Triple Negative Breast Neoplasms , Humans , Animals , Lymphocytes, Tumor-Infiltrating , Biomarkers , Machine Learning
7.
Semin Cancer Biol ; 86(Pt 2): 737-747, 2022 11.
Article in English | MEDLINE | ID: mdl-35405340

ABSTRACT

The tumor immune microenvironment is a determinant of response to cancer immunotherapy and, in many cases, is prognostic for patient survival independently of the type of treatment. Radiation therapy is used in most cancer patients for its direct cytotoxic effects on malignant cells but there is increasing evidence that it also reprograms the tumor immune microenvironment. In this review we discuss the main mechanisms whereby the local inflammatory reaction induced by radiation can reset the cross-talk between the tumor and the immune system. The outcome reflects the balance between immunostimulatory signals that lead to increased tumor antigen presentation and effector T cell activation, and immunosuppressive signals that hinder radiation-induced tumor rejection. The emerging role of small extracellular vesicles (exosomes) in this process will be discussed. Overall, preclinical and early clinical findings support the hypothesis that radiation has the potential to generate an immune-permissive tumor microenvironment. An improved understanding of the pathways involved will enable the design of more effective combinations of radiation and immunotherapy, based on a rationale integration of radiation with other interventions.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Immunotherapy , Neoplasms/radiotherapy , Neoplasms/drug therapy , Antigens, Neoplasm , T-Lymphocytes/metabolism
9.
J Transl Med ; 20(1): 200, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538491

ABSTRACT

The Great Debate session at the 2021 Melanoma Bridge virtual congress (December 2-4) featured counterpoint views from experts on seven important issues in melanoma. The debates considered the use of adoptive cell therapy versus use of bispecific antibodies, mitogen-activated protein kinase (MAPK) inhibitors versus immunotherapy in the adjuvant setting, whether the use of corticosteroids for the management of side effects have an impact on outcomes, the choice of programmed death (PD)-1 combination therapy with cytotoxic T-lymphocyte-associated antigen (CTLA)-4 or lymphocyte-activation gene (LAG)-3, whether radiation is needed for brain metastases, when lymphadenectomy should be integrated into the treatment plan and then the last debate, telemedicine versus face-to-face. As with previous Bridge congresses, the debates were assigned by meeting Chairs and positions taken by experts during the debates may not have necessarily reflected their respective personal view. Audiences voted both before and after each debate.


Subject(s)
Melanoma , CTLA-4 Antigen , Combined Modality Therapy , Humans , Immunotherapy , Lymph Node Excision , Melanoma/genetics , Protein Kinase Inhibitors/therapeutic use
10.
J Transl Med ; 20(1): 257, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672823

ABSTRACT

Over the past decade, immunotherapy has become an increasingly fundamental modality in the treatment of cancer. The positive impact of immune checkpoint inhibition, especially anti-programmed death (PD)-1/PD-ligand (L)1 blockade, in patients with different cancers has focused attention on the potential for other immunotherapeutic approaches. These include inhibitors of additional immune checkpoints, adoptive cell transfer (ACT), and therapeutic vaccines. Patients with advanced cancers who previously had limited treatment options available may now benefit from immunotherapies that can offer durable responses and improved survival outcomes. However, despite this, a significant proportion of patients fail to respond to immunotherapy, especially those with less immunoresponsive cancer types, and there remains a need for new treatment strategies.The virtual Immunotherapy Bridge (December 1st-2nd, 2021), organized by the Fondazione Melanoma Onlus, Naples, Italy in collaboration with the Society for Immunotherapy of Cancer addressed several areas of current research in immunotherapy, including lessons learned from cell therapies, drivers of immune response, and trends in immunotherapy across different cancers, and these are summarised here.


Subject(s)
Biomarkers, Tumor , Melanoma , Biomarkers, Tumor/metabolism , Humans , Immunologic Factors , Immunotherapy , Italy
11.
J Transl Med ; 19(1): 238, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078406

ABSTRACT

Improved understanding of tumor immunology has enabled the development of therapies that harness the immune system and prevent immune escape. Numerous clinical trials and real-world experience has provided evidence of the potential for long-term survival with immunotherapy in various types of malignancy. Recurring observations with immuno-oncology agents include their potential for clinical application across a broad patient population with different tumor types, conventional and unconventional response patterns, durable responses, and immune-related adverse events. Despite the substantial achievements to date, a significant proportion of patients still fail to benefit from current immunotherapy options, and ongoing research is focused on transforming non-responders to responders through the development of novel treatments, new strategies to combination therapy, adjuvant and neoadjuvant approaches, and the identification of biomarkers of response. These topics were the focus of the virtual Immunotherapy Bridge (December 2nd-3rd, 2020), organized by the Fondazione Melanoma Onlus, Naples, Italy, in collaboration with the Society for Immunotherapy of Cancer and are summarised in this report.


Subject(s)
Biomarkers, Tumor , Melanoma , Humans , Immunotherapy , Italy , Neoplasm Recurrence, Local
12.
Trends Immunol ; 39(8): 644-655, 2018 08.
Article in English | MEDLINE | ID: mdl-30001871

ABSTRACT

Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here, we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects.


Subject(s)
Immunotherapy/methods , Neoplasms/radiotherapy , Radiotherapy/methods , T-Lymphocytes/immunology , Animals , Apoptosis , Combined Modality Therapy , Humans , Lymphocyte Activation , Neoplasm Metastasis , Tumor Burden
13.
Jpn J Clin Oncol ; 51(4): 513-522, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33561212

ABSTRACT

With the development of immune checkpoint inhibitors, the efficacy of immunotherapy as a cancer treatment that is effective against multiple tumor types has been established, and this modality came to be considered as the fourth pillar of cancer therapy. The clinical success of immunotherapy greatly changed the field of oncology by highlighting the importance of the immune system in cancer control and elimination. It has now become clear that research into, and the clinical application of, the immune response are important for effective cancer treatment. Moreover, it has become apparent that conventional cancer treatments, such as radiotherapy and chemotherapy, can modulate the cross-talk between the tumor and the immune system, and their efficacy depends, in part, on the ability to elicit antitumor immune response. The ability of radiotherapy to induce an immune response has become relevant in the immunotherapy age. Radiotherapy has been redefined as a partner for cancer immunotherapy, based on evidence indicating the potential synergistic effect of the combination of these therapeutic modalities. This review outlines the major findings reported to date on the immune response induced by radiotherapy and discusses the role of radiotherapy in combination with immunotherapy. Furthermore, we introduce research aimed at the clinical application of combination therapy and discuss its potential in clinical practice and future issues.


Subject(s)
Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Radiotherapy , Clinical Trials as Topic , Combined Modality Therapy , DNA Damage , Humans , Neoplasms/radiotherapy , Tumor Microenvironment/radiation effects
14.
Immunol Rev ; 280(1): 220-230, 2017 11.
Article in English | MEDLINE | ID: mdl-29027232

ABSTRACT

Ionizing irradiation has been extensively employed for the clinical management of solid tumors, with therapeutic or palliative intents, for decades. Until recently, radiation therapy (RT) was believed to mediate antineoplastic activity mostly (if not only) as a consequence of cancer cell-intrinsic effects. Indeed, the macromolecular damage imposed to malignant cells by RT initiates one or multiple signal transduction cascades that drive a permanent proliferative arrest (cellular senescence) or regulated cell death. Both these phenomena show a rather linear dose-response correlation. However, RT also mediates consistent immunological activity, not only as an "on-target effect" originating within irradiated cancer cells, but also as an "off-target effect" depending on the interaction between RT and stromal, endothelial, and immune components of the tumor microenvironment. Interestingly, the immunological activity of RT does not exhibit linear dose-response correlation. Here, we discuss the mechanisms whereby RT alters the capacity of the immune system to recognize and eliminate irradiated cancer cells, either as an "on-target" or as on "off-target" effect. In particular, we discuss the antagonism between the immunostimulatory and immunosuppressive effects of RT as we delineate combinatorial strategies to boost the former at the expenses of the latter.


Subject(s)
Cell Death , Cytotoxicity, Immunologic , Immunity , Neoplasms/radiotherapy , Animals , Antigens, Neoplasm/immunology , Autophagy , Combined Modality Therapy , Humans , Neoplasms/immunology , Radiation, Ionizing , Signal Transduction , Tumor Microenvironment
15.
J Transl Med ; 18(1): 346, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32894202

ABSTRACT

The melanoma treatment landscape changed in 2011 with the approval of the first anti-cytotoxic T-lymphocyte-associated protein (CTLA)-4 checkpoint inhibitor and of the first BRAF-targeted monoclonal antibody, both of which significantly improved overall survival (OS). Since then, improved understanding of the tumor microenvironment (TME) and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. The approval of new immune and targeted therapies has further improved outcomes for patients with advanced melanoma and other combination modalities are also being explored such as chemotherapy, radiotherapy, electrochemotherapy and surgery. In addition, different strategies of drugs administration including sequential or combination treatment are being tested. Approaches to overcome resistance and to potentiate the immune response are being developed. Increasing evidence emerges that tissue and blood-based biomarkers can predict the response to a therapy. The latest findings in melanoma research, including insights into the tumor microenvironment and new biomarkers, improved understanding of tumor immune response and resistance, novel approaches for combination strategies and the role of neoadjuvant and adjuvant therapy, were the focus of discussions at the Melanoma Bridge meeting (5-7 December, 2019, Naples, Italy), which are summarized in this report.


Subject(s)
Immunotherapy , Melanoma , CTLA-4 Antigen , Combined Modality Therapy , Humans , Italy , Melanoma/therapy , Tumor Microenvironment
16.
Trends Immunol ; 38(8): 539-541, 2017 08.
Article in English | MEDLINE | ID: mdl-28602618

ABSTRACT

Two resource articles recently published in Cell demonstrate that the elevated phenotypic complexity of the immune infiltrate in human lung adenocarcinomas and renal cell carcinomas can be reliably dissected with mass cytometry. These findings may pave the way to a new era of precision cancer immunotherapy.


Subject(s)
Flow Cytometry , Mass Spectrometry , Metals, Heavy , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , Tumor Microenvironment/immunology , Humans , Immunotherapy , Precision Medicine
17.
Cancer Treat Res ; 180: 281-296, 2020.
Article in English | MEDLINE | ID: mdl-32215874

ABSTRACT

Immunogenic cell death (ICD) is a particular form of cell death that can initiate adaptive immunity against antigens expressed by dying cells in the absence of exogenous adjuvants. This implies that cells undergoing ICD not only express antigens that are not covered by thymic tolerance, but also deliver adjuvant-like signals that enable the recruitment and maturation of antigen-presenting cells toward an immunostimulatory phenotype, culminating with robust cross-priming of antigen-specific CD8+ T cells. Such damage-associated molecular patterns (DAMPs), which encompass cellular proteins, small metabolites and cytokines, are emitted in a spatiotemporally defined manner in the context of failing adaptation to stress. Radiation therapy (RT) is a bona fide inducer of ICD, at least when employed according to specific doses and fractionation schedules. Here, we discuss the mechanisms whereby DAMPs emitted by cancer cells undergoing RT-driven ICD alter the functional configuration of the tumor microenvironment.


Subject(s)
Alarmins , Immunogenic Cell Death , Neoplasms/immunology , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes , Cytokines , Humans
18.
Semin Cancer Biol ; 52(Pt 2): 125-134, 2018 10.
Article in English | MEDLINE | ID: mdl-29258856

ABSTRACT

Over the past few years, multiple immune checkpoint blockers (ICBs) have achieved unprecedented clinical success and have been approved by regulatory agencies for the treatment of an increasing number of malignancies. However, only a limited fraction of patients responds to ICBs employed as a standalone intervention, calling for the development of combinatorial regimens. Radiation therapy (RT) stands out as a very promising candidate for this purpose. Indeed, RT mediates antineoplastic effects not only by cytotoxic and cytostatic mechanisms, but also by modulating immunological functions, both locally (within the irradiated field) and systemically. As combinatorial regimens involving RT and ICBs are being developed and clinically tested at an accelerating pace, it is paramount to identify biomarkers that reliably predict the likelihood of individual patients to respond. Here, we discuss emerging biomarkers that may potentially predict the response of cancer patients to RT plus ICBs.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/immunology , Neoplasms/radiotherapy , Neoplasms/therapy , Animals , Antineoplastic Agents/immunology , Humans , Neoplasms/immunology , Radiotherapy/methods
19.
Semin Cancer Biol ; 52(Pt 2): 16-25, 2018 10.
Article in English | MEDLINE | ID: mdl-29024776

ABSTRACT

Morphological evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer is gaining momentum as evidence strengthens the clinical relevance of this immunological biomarker. TILs in the post-neoadjuvant residual disease setting are acquiring increasing importance as a stratifying marker in clinical trials, considering the raising interest on immunotherapeutic strategies after neoadjuvant chemotherapy. TILs in ductal carcinoma in situ, with or without invasive carcinoma, represent an emerging area of clinical breast cancer research. The aim of this report is to update pathologists, clinicians and researchers on TIL assessment in both the post-neoadjuvant residual disease and the ductal carcinoma in situ settings. The International Immuno-Oncology Working Group proposes a method for assessing TILs in these settings, based on the previously published International Guidelines on TIL Assessment in Breast Cancer. In this regard, these recommendations represent a consensus guidance for pathologists, aimed to achieve the highest possible consistency among future studies.


Subject(s)
Biomarkers, Tumor/immunology , Breast Neoplasms/immunology , Carcinoma in Situ/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm, Residual/immunology , Female , Humans , Medical Oncology/methods , Neoadjuvant Therapy/methods
20.
Biomarkers ; 23(7): 689-703, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29799276

ABSTRACT

CONTEXT: Accidental exposure to life-threatening radiation in a nuclear event is a major concern; there is an enormous need for identifying biomarkers for radiation biodosimetry to triage populations and treat critically exposed individuals. OBJECTIVE: To identify dose-differentiating miRNA signatures from whole blood samples of whole body irradiated mice. METHODS: Mice were whole body irradiated with X-rays (2 Gy-15 Gy); blood was collected at various time-points post-exposure; total RNA was isolated; miRNA microarrays were performed; miRNAs differentially expressed in irradiated vs. unirradiated controls were identified; feature extraction and classification models were applied to predict dose-differentiating miRNA signature. RESULTS: We observed a time and dose responsive alteration in the expression levels of miRNAs. Maximum number of miRNAs were altered at 24-h and 48-h time-points post-irradiation. A 23-miRNA signature was identified using feature selection algorithms and classifier models. An inverse correlation in the expression level changes of miR-17 members, and their targets were observed in whole body irradiated mice and non-human primates. CONCLUSION: Whole blood-based miRNA expression signatures might be used for predicting radiation exposures in a mass casualty nuclear incident.


Subject(s)
MicroRNAs/blood , Microarray Analysis/methods , Whole-Body Irradiation/adverse effects , Animals , Dose-Response Relationship, Radiation , Gene Expression Profiling , Mice , Radiation Exposure/adverse effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL