Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Rheum Dis Clin North Am ; 50(3): 423-438, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942578

ABSTRACT

Connective tissue disease associated interstitial lung disease (CTD-ILD) is a heterogenous collection of conditions with a diverse spectrum of interstitial lung disease (ILD) manifestations. Currently, clinical practice of lung-directed immunosuppression in CTD-ILD is supported by several randomized, placebo-controlled trials (RCTs) in patients with scleroderma and several observational, retrospective studies in other autoimmune conditions. However, given the harm of immunosuppression in idiopathic pulmonary fibrosis, there is an urgent need for RCTs of immunosuppression and antifibrotic agents in fibrotic CTD-ILD populations as well as the study of intervention in patients with subclinical CTD-ILD.


Subject(s)
Connective Tissue Diseases , Lung Diseases, Interstitial , Humans , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/diagnosis , Connective Tissue Diseases/complications , Immunosuppressive Agents/therapeutic use , Scleroderma, Systemic/complications
2.
Arthritis Rheumatol ; 76(7): 1023-1035, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38412870

ABSTRACT

OBJECTIVE: To investigate immune dysregulation in the peripheral blood that contributes to the pre-rheumatoid arthritis (RA) stage of RA development in anticitrullinated protein antibody (ACPA)+ individuals. METHODS: Using 37 markers by mass cytometry, we investigated peripheral blood mononuclear cells (PBMCs) from ACPA+ at-risk individuals, ACPA+ early untreated patients with RA, and ACPA- controls in the Tokyo Women's Medical University cohort (n = 17 in each group). Computational algorithms, FlowSOM and Optimized t-Distributed Stochastic Neighbor Embedding, were employed to explore specific immunologic differences between study groups. These findings were further evaluated, and longitudinal changes were explored, using flow cytometry and PBMCs from the US-based Targeting Immune Responses for Prevention of RA cohort that included 11 ACPA+ individuals who later developed RA (pre-RA), of which 9 had post-RA diagnosis PBMCs (post-RA), and 11 ACPA- controls. RESULTS: HLA-DR+ peripheral helper T (Tph) cells, activated regulatory T cells, PD-1hi CD8+ T cells, and CXCR5-CD11c-CD38+ naive B cells were significantly expanded in PBMCs from at-risk individuals and patients with early RA from the Tokyo Women's Medical University cohort. Expansion of HLA-DR+ Tph cells and CXCR5-CD11c-CD38+ naive B cells was likewise found in both pre-RA and post-RA time points in the Targeting Immune Responses for Prevention of RA cohort. CONCLUSION: The expansion of HLA-DR+ Tph cells and CXCR5-CD11c-CD38+ naive B cells in ACPA+ individuals, including those who developed inflammatory arthritis and classified RA, supports a key role of these cells in transition from pre-RA to classified RA. These findings may identify a new mechanistic target for treatment and prevention in RA.


Subject(s)
Anti-Citrullinated Protein Antibodies , Arthritis, Rheumatoid , B-Lymphocytes , HLA-DR Antigens , T-Lymphocytes, Helper-Inducer , Humans , Arthritis, Rheumatoid/immunology , Female , Anti-Citrullinated Protein Antibodies/immunology , Anti-Citrullinated Protein Antibodies/blood , Middle Aged , B-Lymphocytes/immunology , T-Lymphocytes, Helper-Inducer/immunology , HLA-DR Antigens/immunology , Male , Adult , Aged , Receptors, CXCR5/immunology , Leukocytes, Mononuclear/immunology , Case-Control Studies , Flow Cytometry
3.
medRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38343853

ABSTRACT

Background: Idiopathic pulmonary fibrosis (IPF) leads to progressive loss of lung function and mortality. Understanding mechanisms and markers of lung injury in IPF is paramount to improving outcomes for these patients. Despite the lack of systemic involvement in IPF, many analyses focus on identifying circulating prognostic markers. Using a proteomic discovery method followed by ELISA validation in multiple IPF lung compartments and cohorts we explored novel markers of IPF survival. Methods: In our discovery analysis, agnostic label-free quantitative proteomics differentiated lung tissue protein expression based on survival trajectory (n=10). Following selection of the candidate pathway (neutrophil extracellular trap (NET) formation), we subsequently validated the presence of NETs in the IPF lung microenvironment using fully quantitative assays of known NET remnants in separate IPF cohorts (n=156 and n=52) with bronchoalveolar lavage fluid. We then assessed the correlation of these markers with baseline pulmonary function and survival. Results: Discovery lung tissue proteomics identified NET formation as significantly associated with poor IPF survival. Using fully quantitative confirmatory tests for reproducibility we confirmed the presence of NET markers in IPF BALF and found significant correlations with worse pulmonary function in both cohorts (p<0.03 and p = 0.04 respectively). In the survival cohort, higher levels of NET markers predicted worse survival after adjusting for gender, age, and baseline physiologic severity (hazard ratio range: 1.79-2.19). Conclusions: NET markers were associated with disease severity and worse survival in IPF. These findings suggest NET formation contributes to lung injury and decreased survival in IPF and may represent a potential therapeutic target.

4.
medRxiv ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38853991

ABSTRACT

Background: Idiopathic interstitial pneumonias (IIPs) such as idiopathic pulmonary fibrosis (IPF) and interstitial pneumonia with autoimmune features (IPAF), present diagnostic and therapeutic challenges due to their heterogeneous nature. This study aimed to identify intrinsic molecular signatures within the lung microenvironment of these IIPs through proteomic analysis of bronchoalveolar lavage fluid (BALF). Methods: Patients with IIP (n=23) underwent comprehensive clinical evaluation including pre-treatment bronchoscopy and were compared to controls without lung disease (n=5). Proteomic profiling of BALF was conducted using label-free quantitative methods. Unsupervised cluster analyses identified protein expression profiles which were then analyzed to predict survival outcomes and investigate associated pathways. Results: Proteomic profiling successfully differentiated IIP from controls. k-means clustering, based on protein expression revealed three distinct IIP clusters, which were not associated with age, smoking history, or baseline pulmonary function. These clusters had unique survival trajectories and provided more accurate survival predictions than the Gender Age Physiology (GAP) index (C-index 0.794 vs. 0.709). The cluster with the worst prognosis featured decreased inflammatory signaling and complement activation, with pathway analysis highlighting altered immune response pathways related to immunoglobulin production and B cell-mediated immunity. Conclusions: The unsupervised clustering of BALF proteomics provided a novel stratification of IIP patients, with potential implications for prognostic and therapeutic targeting. The identified molecular phenotypes underscore the diversity within the IIP classification and the potential importance of personalized treatments for these conditions. Future validation in larger, multi-ethnic cohorts is essential to confirm these findings and to explore their utility in clinical decision-making for patients with IIP.

SELECTION OF CITATIONS
SEARCH DETAIL