Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Development ; 150(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36794954

ABSTRACT

Taste buds on the tongue contain taste receptor cells (TRCs) that detect sweet, sour, salty, umami and bitter stimuli. Like non-taste lingual epithelium, TRCs are renewed from basal keratinocytes, many of which express the transcription factor SOX2. Genetic lineage tracing has shown that SOX2+ lingual progenitors give rise to both taste and non-taste lingual epithelium in the posterior circumvallate taste papilla (CVP) of mice. However, SOX2 is variably expressed among CVP epithelial cells, suggesting that their progenitor potential may vary. Using transcriptome analysis and organoid technology, we show that cells expressing SOX2 at higher levels are taste-competent progenitors that give rise to organoids comprising both TRCs and lingual epithelium. Conversely, organoids derived from progenitors that express SOX2 at lower levels are composed entirely of non-taste cells. Hedgehog and WNT/ß-catenin are required for taste homeostasis in adult mice. However, manipulation of hedgehog signaling in organoids has no impact on TRC differentiation or progenitor proliferation. By contrast, WNT/ß-catenin promotes TRC differentiation in vitro in organoids derived from higher but not low SOX2+ expressing progenitors.


Subject(s)
Taste Buds , beta Catenin , Animals , Mice , beta Catenin/metabolism , Epithelial Cells/metabolism , Hedgehog Proteins/metabolism , Tongue/metabolism
2.
Nat Immunol ; 14(3): 262-70, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23377202

ABSTRACT

The physiological basis and mechanistic requirements for a large number of functional immunoreceptor tyrosine-based activation motifs (ITAMs; high ITAM multiplicity) in the complex of the T cell antigen receptor (TCR) and the invariant signaling protein CD3 remain obscure. Here we found that whereas a low multiplicity of TCR-CD3 ITAMs was sufficient to engage canonical TCR-induced signaling events that led to cytokine secretion, a high multiplicity of TCR-CD3 ITAMs was required for TCR-driven proliferation. This was dependent on the formation of compact immunological synapses, interaction of the adaptor Vav1 with phosphorylated CD3 ITAMs to mediate the recruitment and activation of the oncogenic transcription factor Notch1 and, ultimately, proliferation induced by the cell-cycle regulator c-Myc. Analogous mechanistic events were also needed to drive proliferation in response to weak peptide agonists. Thus, the TCR-driven pathways that initiate cytokine secretion and proliferation are separable and are coordinated by the multiplicity of phosphorylated ITAMs in TCR-CD3.


Subject(s)
CD3 Complex/immunology , Cytokines/biosynthesis , Immunoreceptor Tyrosine-Based Activation Motif/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , CD3 Complex/metabolism , Cell Line , Cell Proliferation , HEK293 Cells , Humans , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-vav/metabolism , Receptor, Notch1/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/metabolism
3.
Annu Rev Physiol ; 78: 243-76, 2016.
Article in English | MEDLINE | ID: mdl-26667078

ABSTRACT

A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis.


Subject(s)
ADAM Proteins/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/physiology , Animals , Humans , Inflammation/metabolism , Inflammation/pathology , Membrane Proteins/metabolism , Signal Transduction/physiology
4.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt B): 2228-2239, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28739265

ABSTRACT

A disintegrin and metalloproteinases (ADAMs) are a family of mSultidomain, membrane-anchored proteases that regulate diverse cellular functions, including cell adhesion, migration, proteolysis and other cell signaling events. Catalytically-active ADAMs act as ectodomain sheddases that proteolytically cleave type I and type II transmembrane proteins and some GPI-anchored proteins from the cellular surface. ADAMs can also modulate other cellular signaling events through a process known as regulated intramembrane proteolysis (RIP). Through their proteolytic activity, ADAMs can rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g. inflammation) and play a central role in coordinating intercellular communication. Dysregulation of these processes through aberrant expression, or sustained ADAM activity, is linked to chronic inflammation, inflammation-associated cancer and tumorigenesis. ADAM10 was the first disintegrin-metalloproteinase demonstrated to have proteolytic activity and is the prototypic ADAM associated with RIP activity (e.g. sequential Notch receptor processing). ADAM10 is abundantly expressed throughout the gastrointestinal tract and during normal intestinal homeostasis ADAM10 regulates many cellular processes associated with intestinal development, cell fate specification and maintenance of intestinal stem cell/progenitor populations. In addition, several signaling pathways that undergo ectodomain shedding by ADAM10 (e.g. Notch, EGFR/ErbB, IL-6/sIL-6R) help control intestinal injury/regenerative responses and may drive intestinal inflammation and colon cancer initiation and progression. Here, I review some of the proposed functions of ADAM10 associated with intestinal crypt homeostasis and tumorigenesis within the gastrointestinal tract in vivo. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.


Subject(s)
ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Carcinogenesis/genetics , Membrane Proteins/genetics , Neoplasms/genetics , Proteolysis , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Cell Membrane/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Membrane Proteins/metabolism , Neoplasms/pathology
5.
FASEB J ; 29(7): 2943-58, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25782989

ABSTRACT

Recent studies suggest a close interaction between epidermal growth factor (EGF) and TLR signaling in the modulation of intestinal epithelial cell (IEC) proliferation; however, how these signaling pathways adjust IEC proliferation is poorly understood. We utilized a model of total parenteral nutrition (TPN), or enteral nutrient deprivation, to study this interaction as TPN results in mucosal atrophy due to decreased IEC proliferation and increased apoptosis. We identified the novel finding of decreased mucosal atrophy in TLR4 knockout (TLR4KO) mice receiving TPN. We hypothesized that EGF signaling is preserved in TLR4KO-TPN mice and prevents mucosal atrophy. C57Bl/6 and strain-matched TLR4KO mice were provided either enteral feeding or TPN. IEC proliferation and apoptosis were measured. Cytokine and growth factor abundances were detected in both groups. To examine interdependence of these pathways, ErbB1 pharmacologic blockade was used. The marked decline in IEC proliferation with TPN was nearly prevented in TLR4KO mice, and intestinal length was partially preserved. EGF was significantly increased, and TNF-α decreased in TLR4KO-TPN versus wild-type (WT)-TPN mice. Apoptotic positive crypt cells were 15-fold higher in WT-TPN versus TLR4KO-TPN mice. Bcl-2 was significantly increased in TLR4KO-TPN mice, while Bax decreased 10-fold. ErbB1 blockade prevented this otherwise protective effect in TLR4KO-sTPN mice. TLR4 blockade significantly prevented TPN-associated atrophy by preserving proliferation and preventing apoptosis. This is driven by a reduction in TNF-α abundance and increased EGF. Potential manipulation of this regulatory pathway may have significant clinical potential to prevent TPN-associated atrophy.


Subject(s)
Epidermal Growth Factor/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Parenteral Nutrition, Total/adverse effects , Toll-Like Receptor 4/metabolism , Animals , Apoptosis , Atrophy , Cell Proliferation , Epidermal Growth Factor/antagonists & inhibitors , Epidermal Growth Factor/genetics , ErbB Receptors/antagonists & inhibitors , Gefitinib , Interferon-gamma/metabolism , Intestinal Mucosa/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Quinazolines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor-alpha/metabolism
6.
J Neurosci ; 34(29): 9590-606, 2014 07 16.
Article in English | MEDLINE | ID: mdl-25031401

ABSTRACT

Discrete cellular microenvironments regulate stem cell pools and their development, as well as function in maintaining tissue homeostasis. Although the signaling elements modulating neural progenitor cells (NPCs) of the adult subventricular zone (SVZ) niche are fairly well understood, the pathways activated following injury and the resulting outcomes, are less clear. In the present study, we used mouse models of demyelination and proteomics analysis to identify molecular cues present in the adult SVZ niche during injury, and analyzed their role on NPCs in the context of promoting myelin repair. Proteomic analysis of SVZ tissue from mice with experimental demyelination identified several proteins that are known to play roles in NPC proliferation, adhesion, and migration. Among the proteins found to be upregulated were members of the N-cadherin signaling pathway. During the onset of demyelination in the subcortical white matter (SCWM), activation of epidermal growth factor receptor (EGFR) signaling in SVZ NPCs stimulates the interaction between N-cadherin and ADAM10. Upon cleavage and activation of N-cadherin signaling by ADAM10, NPCs undergo cytoskeletal rearrangement and polarization, leading to enhanced migration out of the SVZ into demyelinated lesions of the SCWM. Genetically disrupting either EGFR signaling or ADAM10 inhibits this pathway, preventing N-cadherin regulated NPC polarization and migration. Additionally, in vivo experiments using N-cadherin gain- and loss-of-function approaches demonstrated that N-cadherin enhances the recruitment of SVZ NPCs into demyelinated lesions. Our data revealed that EGFR-dependent N-cadherin signaling physically initiated by ADAM10 cleavage is the response of the SVZ niche to promote repair of the injured brain.


Subject(s)
Cadherins/metabolism , Cell Movement/physiology , Gene Expression Regulation/physiology , Lateral Ventricles/cytology , Neural Stem Cells/physiology , Recovery of Function/physiology , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/metabolism , Animals , Antigens/genetics , Antigens/metabolism , Cadherins/genetics , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Movement/drug effects , Demyelinating Diseases/chemically induced , Disease Models, Animal , Epidermal Growth Factor/pharmacology , Gene Expression Regulation/drug effects , Mice , Mice, Transgenic , Myelin Proteins/genetics , Myelin Proteins/metabolism , Organ Culture Techniques , Proteoglycans/genetics , Proteoglycans/metabolism , Proteomics , Recovery of Function/drug effects , Recovery of Function/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Time Factors , Wiskott-Aldrich Syndrome Protein Family/genetics , Wiskott-Aldrich Syndrome Protein Family/metabolism
7.
Gastroenterology ; 147(4): 822-834.e13, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25038433

ABSTRACT

BACKGROUND & AIMS: A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. METHODS: We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. RESULTS: Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. CONCLUSIONS: ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance.


Subject(s)
ADAM Proteins/metabolism , Amyloid Precursor Protein Secretases/metabolism , Intestines/enzymology , Membrane Proteins/metabolism , Receptors, Notch/metabolism , Stem Cell Niche , Stem Cells/enzymology , ADAM Proteins/deficiency , ADAM Proteins/genetics , ADAM10 Protein , Amyloid Precursor Protein Secretases/deficiency , Amyloid Precursor Protein Secretases/genetics , Animals , Cell Differentiation , Cell Line , Cell Lineage , Cell Proliferation , Cell Survival , Enteroendocrine Cells/enzymology , Goblet Cells/enzymology , Intestines/cytology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Knockout , Organoids , Paneth Cells/enzymology , Phenotype , Signal Transduction , Time Factors
8.
Development ; 139(3): 488-97, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22190634

ABSTRACT

Notch signaling is known to regulate the proliferation and differentiation of intestinal stem and progenitor cells; however, direct cellular targets and specific functions of Notch signals had not been identified. We show here in mice that Notch directly targets the crypt base columnar (CBC) cell to maintain stem cell activity. Notch inhibition induced rapid CBC cell loss, with reduced proliferation, apoptotic cell death and reduced efficiency of organoid initiation. Furthermore, expression of the CBC stem cell-specific marker Olfm4 was directly dependent on Notch signaling, with transcription activated through RBP-Jκ binding sites in the promoter. Notch inhibition also led to precocious differentiation of epithelial progenitors into secretory cell types, including large numbers of cells that expressed both Paneth and goblet cell markers. Analysis of Notch function in Atoh1-deficient intestine demonstrated that the cellular changes were dependent on Atoh1, whereas Notch regulation of Olfm4 gene expression was Atoh1 independent. Our findings suggest that Notch targets distinct progenitor cell populations to maintain adult intestinal stem cells and to regulate cell fate choice to control epithelial cell homeostasis.


Subject(s)
Cell Differentiation , Cell Proliferation , Gene Expression Regulation , Intestine, Small/cytology , Receptor, Notch1/metabolism , Receptor, Notch2/metabolism , Animals , Apoptosis/drug effects , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Goblet Cells/metabolism , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Intestine, Small/drug effects , Intestine, Small/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Organ Culture Techniques , Paneth Cells/metabolism , Promoter Regions, Genetic , Receptor, Notch1/antagonists & inhibitors , Receptor, Notch2/antagonists & inhibitors , Signal Transduction , Stem Cells/cytology , Stem Cells/physiology
9.
J Biol Chem ; 288(42): 30742-30751, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24043629

ABSTRACT

p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17(-/-) MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17(-/-) MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR.


Subject(s)
Bacterial Proteins/metabolism , Epithelial Cells/metabolism , ErbB Receptors/biosynthesis , Intercellular Signaling Peptides and Proteins/metabolism , Intestinal Mucosa/metabolism , Lacticaseibacillus rhamnosus/metabolism , Probiotics/metabolism , Transcriptional Activation , ADAM Proteins/biosynthesis , ADAM Proteins/genetics , ADAM17 Protein , Animals , Cell Line, Tumor , Enzyme Activation/genetics , Epithelial Cells/cytology , Epithelial Cells/microbiology , ErbB Receptors/genetics , Gene Expression Regulation, Enzymologic/genetics , Gene Knockdown Techniques , Heparin-binding EGF-like Growth Factor , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intestinal Mucosa/cytology , Intestinal Mucosa/microbiology , Mice , Mice, Knockout , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor alpha/genetics , Transforming Growth Factor alpha/metabolism , Up-Regulation/genetics
10.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39026840

ABSTRACT

Initial landmark studies in the design of synthetic hydrogels for intestinal organoid culture identified precise matrix requirements for differentiation, namely decompression of matrix-imposed forces and supplementation of laminin. But beyond stating the necessity of laminin, organoid-laminin interactions have gone largely unstudied, as this ubiquitous requirement of exogenous laminin hinders investigation. In this work, we exploit a fast stress relaxing, boronate ester based synthetic hydrogel for the culture of intestinal organoids, and fortuitously discover that unlike all other synthetic hydrogels to date, laminin does not need to be supplemented for crypt formation. This highly defined material provides a unique opportunity to investigate laminin-organoid interactions and how it influences crypt evolution and organoid function. Via fluorescent labeling of non-canonical amino acids, we further show that adaptable boronate ester bonds increase deposition of nascent proteins, including laminin. Collectively, these results advance the understanding of how mechanical and matricellular signaling influence intestinal organoid development.

11.
PLoS One ; 19(4): e0298808, 2024.
Article in English | MEDLINE | ID: mdl-38598488

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) presents at advanced stages and is refractory to most treatment modalities. Wnt signaling activation plays a critical role in proliferation and chemotherapeutic resistance. Minimal media conditions, growth factor dependency, and Wnt dependency were determined via Wnt inhibition for seven patient derived organoids (PDOs) derived from pancreatic tumor organoid libraries (PTOL). Organoids demonstrating response in vitro were assessed in vivo using patient-derived xenografts. Wnt (in)dependent gene signatures were identified for each organoid. Panc269 demonstrated a trend of reduced organoid growth when treated with ETC-159 in combination with paclitaxel or gemcitabine as compared with chemotherapy or ETC-159 alone. Panc320 demonstrated a more pronounced anti-proliferative effect in the combination of ETC-159 and paclitaxel but not with gemcitabine. Panc269 and Panc320 were implanted into nude mice and treated with ETC-159, paclitaxel, and gemcitabine as single agents and in combination. The combination of ETC-159 and paclitaxel demonstrated an anti-tumor effect greater than ETC-159 alone. Extent of combinatory treatment effect were observed to a lesser extent in the Panc320 xenograft. Wnt (in)dependent gene signatures of Panc269 and 320 were consistent with the phenotypes displayed. Gene expression of several key Wnt genes assessed via RT-PCR demonstrated notable fold change following treatment in vivo. Each pancreatic organoid demonstrated varied niche factor dependencies, providing an avenue for targeted therapy, supported through growth analysis following combinatory treatment of Wnt inhibitor and standard chemotherapy in vitro. The clinical utilization of this combinatory treatment modality in pancreatic cancer PDOs has thus far been supported in our patient-derived xenograft models treated with Wnt inhibitor plus paclitaxel or gemcitabine. Gene expression analysis suggests there are key Wnt genes that contribute to the Wnt (in)dependent phenotypes of pancreatic tumors, providing plausible mechanistic explanation for Wnt (in)dependency and susceptibility or resistance to treatment on the genotypic level.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Humans , Gemcitabine , Wnt Signaling Pathway , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Mice, Nude , Cell Proliferation , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Organoids/metabolism , Xenograft Model Antitumor Assays
12.
Neurobiol Dis ; 49: 137-47, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22940630

ABSTRACT

Proteolytic cleavage of the amyloid precursor protein (APP) by the two proteases α- and ß-secretases controls the generation of the amyloid ß peptide (Aß), a key player in Alzheimer's disease pathogenesis. The α-secretase ADAM10 and the ß-secretase BACE1 have opposite effects on Aß generation and are assumed to compete for APP as a substrate, such that their cleavages are inversely coupled. This concept was mainly demonstrated in studies using activation or overexpression of α- and ß-secretases. Here, we report that this inverse coupling is not seen to the same extent upon inhibition of the endogenous proteases. Genetic and pharmacological inhibition of ADAM10 and BACE1 revealed that the endogenous, constitutive α-secretase cleavage of APP is largely uncoupled from ß-secretase cleavage and Aß generation in neuroglioma H4 cells and in neuronally differentiated SH-SY5Y cells. In contrast, inverse coupling was observed in primary cortical neurons. However, this coupling was not bidirectional. Inhibition of BACE1 increased ADAM10 cleavage of APP, but a reduction of ADAM10 activity did not increase the BACE1 cleavage of APP in the neurons. Our analysis shows that the inverse coupling of the endogenous α- and ß-secretase cleavages depends on the cellular model and suggests that a reduction of ADAM10 activity is unlikely to increase the AD risk through increased ß-secretase cleavage.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Neurons/enzymology , ADAM Proteins/antagonists & inhibitors , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM10 Protein , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/genetics , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Cell Line, Tumor , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/enzymology , Gene Knockdown Techniques , HEK293 Cells , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Knockout , Neurons/drug effects , Protease Inhibitors/pharmacology
13.
Sci Adv ; 9(3): eadd5668, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36662859

ABSTRACT

Spatiotemporally coordinated transformations in epithelial curvature are necessary to generate crypt-villus structures during intestinal development. However, the temporal regulation of mechanotransduction pathways that drive crypt morphogenesis remains understudied. Intestinal organoids have proven useful to study crypt morphogenesis in vitro, yet the reliance on static culture scaffolds limits the ability to assess the temporal effects of changing curvature. Here, a photoinduced hydrogel cross-link exchange reaction is used to spatiotemporally alter epithelial curvature and study how dynamic changes in curvature influence mechanotransduction pathways to instruct crypt morphogenesis. Photopatterned curvature increased membrane tension and depolarization, which was required for subsequent nuclear localization of yes-associated protein 1 (YAP) observed 24 hours following curvature change. Curvature-directed crypt morphogenesis only occurred following a delay in the induction of differentiation that coincided with the delay in spatially restricted YAP localization, indicating that dynamic changes in curvature initiate epithelial curvature-dependent mechanotransduction pathways that temporally regulate crypt morphogenesis.


Subject(s)
Intestines , Mechanotransduction, Cellular , Intestinal Mucosa/metabolism , Organoids , Morphogenesis
14.
J Cell Sci ; 123(Pt 13): 2319-31, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20530572

ABSTRACT

Betacellulin (BTC) belongs to the family of epidermal growth factor (EGF)-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release soluble mature ligands. BTC is a dual-specificity ligand for ErbB1 and ErbB4 receptors, and can activate unique signal-transduction pathways that are beneficial for the function, survival and regeneration of pancreatic beta-cells. We have previously shown that BTC precursor (proBTC) is cleaved by ADAM10 to generate soluble ligand and a stable, transmembrane remnant (BTC-CTF). In this study, we analyzed the fate of the BTC-CTF in greater detail. We demonstrated that proBTC is cleaved by ADAM10 to produce BTC-CTF, which then undergoes intramembrane processing by presenilin-1- and/or presenilin-2-dependent gamma-secretase to generate an intracellular-domain fragment (BTC-ICD). We found that the proBTC cytoplasmic domain is palmitoylated and that palmitoylation is not required for ADAM10-dependent cleavage but is necessary for the stability and gamma-secretase-dependent processing of BTC-CTF to generate BTC-ICD. Additionally, palmitoylation is required for nuclear-membrane localization of BTC-ICD, as demonstrated by the redistribution of non-palmitoylated BTC-ICD mutant to the nucleoplasm. Importantly, a novel receptor-independent role for BTC-ICD signaling is suggested by the ability of BTC-ICD to inhibit cell growth in vitro.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Peptide Fragments/metabolism , Protein Precursors/metabolism , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM10 Protein , Amino Acid Sequence , Amyloid Precursor Protein Secretases/genetics , Animals , Betacellulin , Cell Line , Cell Membrane/metabolism , Cell Nucleus/metabolism , Cell Proliferation , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Lipoylation , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Molecular Sequence Data , Peptide Fragments/genetics , Presenilin-1/metabolism , Presenilin-2/metabolism , Protein Precursors/genetics , Protein Structure, Tertiary
16.
Cell Mol Gastroenterol Hepatol ; 13(3): 843-856, 2022.
Article in English | MEDLINE | ID: mdl-34915204

ABSTRACT

The epithelial lining of the intestine, particularly the stem cell compartment, is affected by harsh conditions in the luminal environment and also is susceptible to genotoxic agents such as radiation and chemotherapy. Therefore, the ability for intestinal epithelial cells to revert to a stem cell state is an important physiological damage response to regenerate the intestinal epithelium at sites of mucosal injury. Many signaling networks involved in maintaining the stem cell niche are activated as part of the damage response to promote cellular plasticity and regeneration. The relative contribution of each cell type and signaling pathway is a critical area of ongoing research, likely dependent on the nature of injury as well as the regional specification within the intestine. Here, we review the current understanding of the multicellular cooperation to restore the intestinal epithelium after damage.


Subject(s)
Cell Plasticity , Stem Cell Niche , Homeostasis , Intestines , Regeneration
17.
Adv Mater ; 34(16): e2109252, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35182403

ABSTRACT

3D organoid models have recently seen a boom in popularity, as they can better recapitulate the complexity of multicellular organs compared to other in vitro culture systems. However, organoids are difficult to image because of the limited penetration depth of high-resolution microscopes and depth-dependent light attenuation, which can limit the understanding of signal transduction pathways and characterization of intimate cell-extracellular matrix (ECM) interactions. To overcome these challenges, phototransfer by allyl sulfide exchange-expansion microscopy (PhASE-ExM) is developed, enabling optical clearance and super-resolution imaging of organoids and their ECM in 3D. PhASE-ExM uses hydrogels prepared via photoinitiated polymerization, which is advantageous as it decouples monomer diffusion into thick organoid cultures from the hydrogel fabrication. Apart from compatibility with organoids cultured in Matrigel, PhASE-ExM enables 3.25× expansion and super-resolution imaging of organoids cultured in synthetic poly(ethylene glycol) (PEG) hydrogels crosslinked via allyl-sulfide groups (PEG-AlS) through simultaneous photopolymerization and radical-mediated chain-transfer reactions that complete in <70 s. Further, PEG-AlS hydrogels can be in situ softened to promote organoid crypt formation, providing a super-resolution imaging platform both for pre- and post-differentiated organoids. Overall, PhASE-ExM is a useful tool to decipher organoid behavior by enabling sub-micrometer scale, 3D visualization of proteins and signal transduction pathways.


Subject(s)
Microscopy , Organoids , Allyl Compounds , Biocompatible Materials/metabolism , Extracellular Matrix , Hydrogels/metabolism , Organoids/metabolism , Sulfides
18.
Sci Rep ; 12(1): 4352, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288626

ABSTRACT

Roundabout 4 (Robo4) is a transmembrane receptor that expresses specifically in endothelial cells. Soluble Robo4 was reported in the human plasma and mouse serum and is inhibitory towards FGF- and VEGF-induced angiogenesis. It remains unknown how soluble Robo4 is generated and if soluble Robo4 regulates additional angiogenic signaling. Here, we report soluble Robo4 is the product of constitutive ectodomain shedding of endothelial cell surface Robo4 by disintegrin metalloproteinases ADAM10 and ADAM17 and acts to inhibit angiogenic Slit3 signaling. Meanwhile, the ligand Slit3 induces cell surface receptor Robo4 endocytosis to shield Robo4 from shedding, showing Slit3 inhibits Robo4 shedding to enhance Robo4 signaling. Our study delineated ADAM10 and ADAM17 are Robo4 sheddases, and ectodomain shedding, including negative regulation by its ligand Slit3, represents a novel control mechanism of Robo4 signaling in angiogenesis.


Subject(s)
Endothelial Cells , Membrane Proteins , ADAM10 Protein/metabolism , ADAM17 Protein/metabolism , Animals , Endothelial Cells/metabolism , Ligands , Membrane Proteins/metabolism , Mice , Neovascularization, Pathologic/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
19.
Am J Physiol Gastrointest Liver Physiol ; 301(2): G338-46, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21617117

ABSTRACT

Disruption of intestinal epithelial homeostasis, including enhanced apoptosis, is a hallmark of inflammatory bowel disease (IBD). We have recently shown that tumor necrosis factor (TNF) increases the kinase activity of ErbB4, a member of the epidermal growth factor receptor family that is elevated in mucosa of IBD patients and that promotes colon epithelial cell survival. In this study, we tested the hypothesis that TNF transactivates ErbB4 through TNF-α converting enzyme (TACE)-mediated ligand release and that this transactivation is necessary to protect colonic epithelial cells from cytokine-induced apoptosis. Using neutralizing antibodies, we show that heparin-binding EGF-like growth factor (HB-EGF) is required for ErbB4 phosphorylation in response to TNF. Pharmacological or genetic inhibition of the metalloprotease TACE, which mediates HB-EGF release from cells, blocked TNF-induced ErbB4 activation. MEK, but not Src or p38, was also required for transactivation. TACE activity and ligand binding were required for ErbB4-mediated antiapoptotic signaling; whereas mouse colon epithelial cells expressing ErbB4 were resistant to TNF-induced apoptosis, TACE inhibition or blockade of ErbB4 ligand binding reversed the survival advantage. We conclude that TNF transactivates ErbB4 through TACE-dependent HB-EGF release, thus protecting colon epithelial cells from cytokine-induced apoptosis. These findings have important implications for understanding how ErbB4 protects the colon from apoptosis-induced tissue injury in inflammatory conditions such as IBD.


Subject(s)
ADAM Proteins/physiology , Cell Survival/drug effects , Epithelial Cells/physiology , ErbB Receptors/metabolism , ErbB Receptors/physiology , Intercellular Signaling Peptides and Proteins/physiology , Tumor Necrosis Factor-alpha/pharmacology , ADAM17 Protein , Animals , Apoptosis/drug effects , Cell Line , Colon/metabolism , Colon/physiology , Dogs , Epithelial Cells/enzymology , Heparin-binding EGF-like Growth Factor , Ligands , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/physiology , Receptor, ErbB-4 , Signal Transduction , Transcriptional Activation/drug effects
20.
Gastroenterology ; 136(4): 1297-1307, e1-3, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19250983

ABSTRACT

BACKGROUND & AIMS: Helicobacter pylori infection disrupts the balance between gastric epithelial cell proliferation and apoptosis, which is likely to lower the threshold for the development of gastric adenocarcinoma. H pylori infection is associated with epidermal growth factor (EGF) receptor (EGFR) activation through metalloproteinase-dependent release of EGFR ligands in gastric epithelial cells. Because EGFR signaling regulates cell survival, we investigated whether activation of EGFR following H pylori infection promotes gastric epithelial survival. METHODS: Mouse conditionally immortalized stomach epithelial cells (ImSt) and a human gastric epithelial cell line, AGS cells, as well as wild-type and kinase-defective EGFR (EGFRwa2) mice, were infected with the H pylori cag+ strain 7.13. Apoptosis, caspase activity, EGFR activation (phosphorylation), and EGFR downstream targets were analyzed. RESULTS: Inhibiting EGFR kinase activity or decreasing EGFR expression significantly increased H pylori-induced apoptosis in ImSt. Blocking H pylori-induced EGFR activation with a heparin-binding (HB)-EGF neutralizing antibody or abrogating a disintegrin and matrix metalloproteinase-17 (ADAM-17) expression increased apoptosis of H pylori-infected AGS and ImSt, respectively. Conversely, pretreatment of ImSt with HB-EGF completely blocked H pylori-induced apoptosis. H pylori infection stimulated gastric epithelial cell apoptosis in EGFRwa2 but not in wild-type mice. Furthermore, H pylori-induced EGFR phosphorylation stimulated phosphotidylinositol-3'-kinase-dependent activation of the antiapoptotic factor Akt, increased expression of the antiapoptotic factor Bcl-2, and decreased expression of the proapoptotic factor Bax. CONCLUSIONS: EGFR activation by H pylori infection has an antiapoptotic effect in gastric epithelial cells that appears to involve Akt signaling and Bcl family members. These findings provide important insights into the mechanisms of H pylori-associated tumorigenesis.


Subject(s)
Apoptosis , Epithelial Cells/microbiology , Epithelial Cells/pathology , ErbB Receptors/metabolism , Helicobacter Infections/prevention & control , Stomach/microbiology , Stomach/pathology , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM17 Protein , Animals , Caspase 3/metabolism , Cell Line , Cell Proliferation , Disease Models, Animal , Epithelial Cells/metabolism , Gastric Mucosa/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori , Humans , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/physiology , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL