Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(6): 1162-1178.e20, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931244

ABSTRACT

Germline histone H3.3 amino acid substitutions, including H3.3G34R/V, cause severe neurodevelopmental syndromes. To understand how these mutations impact brain development, we generated H3.3G34R/V/W knock-in mice and identified strikingly distinct developmental defects for each mutation. H3.3G34R-mutants exhibited progressive microcephaly and neurodegeneration, with abnormal accumulation of disease-associated microglia and concurrent neuronal depletion. G34R severely decreased H3K36me2 on the mutant H3.3 tail, impairing recruitment of DNA methyltransferase DNMT3A and its redistribution on chromatin. These changes were concurrent with sustained expression of complement and other innate immune genes possibly through loss of non-CG (CH) methylation and silencing of neuronal gene promoters through aberrant CG methylation. Complement expression in G34R brains may lead to neuroinflammation possibly accounting for progressive neurodegeneration. Our study reveals that H3.3G34-substitutions have differential impact on the epigenome, which underlie the diverse phenotypes observed, and uncovers potential roles for H3K36me2 and DNMT3A-dependent CH-methylation in modulating synaptic pruning and neuroinflammation in post-natal brains.


Subject(s)
DNA Methyltransferase 3A , Histones , Animals , Mice , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , DNA Modification Methylases/genetics , Histones/metabolism , Neuroinflammatory Diseases
2.
Am J Hum Genet ; 110(11): 1959-1975, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37883978

ABSTRACT

Valosin-containing protein (VCP) is an AAA+ ATPase that plays critical roles in multiple ubiquitin-dependent cellular processes. Dominant pathogenic variants in VCP are associated with adult-onset multisystem proteinopathy (MSP), which manifests as myopathy, bone disease, dementia, and/or motor neuron disease. Through GeneMatcher, we identified 13 unrelated individuals who harbor heterozygous VCP variants (12 de novo and 1 inherited) associated with a childhood-onset disorder characterized by developmental delay, intellectual disability, hypotonia, and macrocephaly. Trio exome sequencing or a multigene panel identified nine missense variants, two in-frame deletions, one frameshift, and one splicing variant. We performed in vitro functional studies and in silico modeling to investigate the impact of these variants on protein function. In contrast to MSP variants, most missense variants had decreased ATPase activity, and one caused hyperactivation. Other variants were predicted to cause haploinsufficiency, suggesting a loss-of-function mechanism. This cohort expands the spectrum of VCP-related disease to include neurodevelopmental disease presenting in childhood.


Subject(s)
Muscular Diseases , Neurodevelopmental Disorders , Adult , Humans , Valosin Containing Protein/genetics , Muscle Hypotonia , Mutation, Missense/genetics
3.
Am J Hum Genet ; 108(6): 1053-1068, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33909990

ABSTRACT

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.


Subject(s)
Abnormalities, Multiple/pathology , Adenosine Triphosphatases/genetics , Craniofacial Abnormalities/pathology , DNA Methylation , Epigenesis, Genetic , Growth Disorders/pathology , Heart Septal Defects, Ventricular/pathology , Mutation , Neurodevelopmental Disorders/pathology , Phenotype , Abnormalities, Multiple/genetics , Case-Control Studies , Cohort Studies , Craniofacial Abnormalities/genetics , Female , Genetic Predisposition to Disease , Growth Disorders/genetics , Heart Septal Defects, Ventricular/genetics , Humans , Infant, Newborn , Male , Neurodevelopmental Disorders/genetics
4.
Am J Hum Genet ; 108(6): 1138-1150, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33909992

ABSTRACT

ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.


Subject(s)
Craniofacial Abnormalities/etiology , Heterozygote , Intellectual Disability/etiology , Language Development Disorders/etiology , Loss of Function Mutation , RNA-Binding Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , Craniofacial Abnormalities/pathology , Female , Haploinsufficiency , Humans , Infant , Intellectual Disability/pathology , Language Development Disorders/pathology , Male , Pedigree , Phenotype , RNA-Binding Proteins/metabolism , Signal Transduction , Syndrome , Young Adult
5.
Genet Med ; 26(5): 101097, 2024 05.
Article in English | MEDLINE | ID: mdl-38334070

ABSTRACT

PURPOSE: Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4-/- cells. METHODS: The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes. Fluorescence-activated cell sorting separated cells with correction of the enlarged lysosomes from uncorrected cells. Patient variants of SLC12A9 were identified by exome or genome sequencing and studied by segregation analysis and clinical characterization. RESULTS: Overexpression of SLC12A9, a solute co-transporter, corrected lysosomal swelling in FIG4-/- cells. SLC12A9 (NP_064631.2) colocalized with LAMP2 at the lysosome membrane. Biallelic variants of SLC12A9 were identified in 3 unrelated probands with neurodevelopmental disorders. Common features included intellectual disability, skeletal and brain structural abnormalities, congenital heart defects, and hypopigmented hair. Patient 1 was homozygous for nonsense variant p.(Arg615∗), patient 2 was compound heterozygous for p.(Ser109Lysfs∗20) and a large deletion, and proband 3 was compound heterozygous for p.(Glu290Glyfs∗36) and p.(Asn552Lys). Fibroblasts from proband 1 contained enlarged lysosomes that were corrected by wild-type SLC12A9 cDNA. Patient variant p.(Asn552Lys) failed to correct the lysosomal defect. CONCLUSION: Impaired function of SLC12A9 results in enlarged lysosomes and a recessive disorder with a recognizable neurodevelopmental phenotype.


Subject(s)
Lysosomes , Neurodevelopmental Disorders , Sodium-Potassium-Chloride Symporters , Child , Child, Preschool , Female , Humans , Infant , Male , Alleles , Loss of Function Mutation/genetics , Lysosomes/genetics , Lysosomes/metabolism , Lysosomes/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Pedigree , Phenotype , Sodium-Potassium-Chloride Symporters/genetics
6.
Neuropediatrics ; 55(2): 117-123, 2024 04.
Article in English | MEDLINE | ID: mdl-38181817

ABSTRACT

INTRODUCTION: We report a case study of two male pediatric patients presenting with anterior uveitis and elevated renal function parameters. Both were diagnosed with tubulointerstitial nephritis and uveitis syndrome and subsequently developed diffuse cerebral symptoms such as headache, fatigue, and diziness. METHODS: Magnetic resonance images (MRIs) of the brain showed T2-hyperintense lesions with and without gadolinium enhancement leading to brain biopsy and diagnosis of small-vessel central nervous system (CNS) vasculitis in both cases. Both patients were treated according to BrainWorks small-vessel vasculitis protocol and symptoms vanished over the course of treatment. Follow-up MRIs up to 12 months after initiation of therapy showed no signs of recurrence indicating a monophasic disease. CONCLUSION: Small-vessel CNS vasculitis can occur simultaneously to other autoimmune diseases (ADs) in the scope of polyautoimmunity. As clinical findings of CNS vasculitis are often unspecific, neurological symptoms in nonneurological ADs should be adressed thoroughly. Under suspicion of small-vessel CNS vasculitis brain biopsy is still the gold standard and only secure way of definitive diagnosis.


Subject(s)
Nephritis, Interstitial , Uveitis , Vasculitis, Central Nervous System , Humans , Male , Child , Contrast Media/therapeutic use , Gadolinium/therapeutic use , Uveitis/complications , Uveitis/diagnosis , Vasculitis, Central Nervous System/complications , Vasculitis, Central Nervous System/diagnosis
7.
Neurogenetics ; 24(2): 79-93, 2023 04.
Article in English | MEDLINE | ID: mdl-36653678

ABSTRACT

Type I inositol polyphosphate-4-phosphatase (INPP4A) belongs to the group of phosphoinositide phosphatases controlling proliferation, apoptosis, and endosome function by hydrolyzing phosphatidylinositol 3,4-bisphosphate. INPP4A produces multiple transcripts encoding shorter and longer INPP4A isoforms with hydrophilic or hydrophobic C-terminus. Biallelic INPP4A truncating variants cause a spectrum of neurodevelopmental disorders ranging from moderate intellectual disability to postnatal microcephaly with developmental and epileptic encephalopathy and (ponto)cerebellar hypoplasia. We report a girl with the novel homozygous INPP4A variant NM_001134224.2:c.2840del/p.(Gly947Glufs*12) (isoform d). She presented with postnatal microcephaly, global developmental delay, visual impairment, myoclonic seizures, and pontocerebellar hypoplasia and died at the age of 27 months. The level of mutant INPP4A mRNAs in proband-derived leukocytes was comparable to controls suggesting production of C-terminally altered INPP4A isoforms. We transiently expressed eGFP-tagged INPP4A isoform a (NM_004027.3) wildtype and p.(Gly908Glufs*12) mutant [p.(Gly947Glufs*12) according to NM_001134224.2] as well as INPP4A isoform b (NM_001566.2) wildtype and p.(Asp915Alafs*2) mutant, previously reported in family members with moderate intellectual disability, in HeLa cells and determined their subcellular distributions. While INPP4A isoform a was preferentially found in perinuclear clusters co-localizing with the GTPase Rab5, isoform b showed a net-like distribution, possibly localizing near and/or on microtubules. Quantification of intracellular localization patterns of the two INPP4A mutants revealed significant differences compared with the respective wildtype and similarity with each other. Our data suggests an important non-redundant function of INPP4A isoforms with hydrophobic or hydrophilic C-terminus in the brain.


Subject(s)
Intellectual Disability , Microcephaly , Child, Preschool , Female , Humans , Cerebellum , HeLa Cells , Intellectual Disability/genetics , Microcephaly/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism
8.
Am J Hum Genet ; 107(6): 1062-1077, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33217309

ABSTRACT

Dysfunction of the endolysosomal system is often associated with neurodegenerative disease because postmitotic neurons are particularly reliant on the elimination of intracellular aggregates. Adequate function of endosomes and lysosomes requires finely tuned luminal ion homeostasis and transmembrane ion fluxes. Endolysosomal CLC Cl-/H+ exchangers function as electric shunts for proton pumping and in luminal Cl- accumulation. We now report three unrelated children with severe neurodegenerative disease, who carry the same de novo c.1658A>G (p.Tyr553Cys) mutation in CLCN6, encoding the late endosomal Cl-/H+-exchanger ClC-6. Whereas Clcn6-/- mice have only mild neuronal lysosomal storage abnormalities, the affected individuals displayed severe developmental delay with pronounced generalized hypotonia, respiratory insufficiency, and variable neurodegeneration and diffusion restriction in cerebral peduncles, midbrain, and/or brainstem in MRI scans. The p.Tyr553Cys amino acid substitution strongly slowed ClC-6 gating and increased current amplitudes, particularly at the acidic pH of late endosomes. Transfection of ClC-6Tyr553Cys, but not ClC-6WT, generated giant LAMP1-positive vacuoles that were poorly acidified. Their generation strictly required ClC-6 ion transport, as shown by transport-deficient double mutants, and depended on Cl-/H+ exchange, as revealed by combination with the uncoupling p.Glu200Ala substitution. Transfection of either ClC-6Tyr553Cys/Glu200Ala or ClC-6Glu200Ala generated slightly enlarged vesicles, suggesting that p.Glu200Ala, previously associated with infantile spasms and microcephaly, is also pathogenic. Bafilomycin treatment abrogated vacuole generation, indicating that H+-driven Cl- accumulation osmotically drives vesicle enlargement. Our work establishes mutations in CLCN6 associated with neurological diseases, whose spectrum of clinical features depends on the differential impact of the allele on ClC-6 function.


Subject(s)
Chloride Channels/genetics , Gain of Function Mutation , Neurodegenerative Diseases/genetics , Alleles , Animals , CHO Cells , Child , Cricetulus , Electrophysiology , Endosomes/metabolism , Female , HeLa Cells , Heterozygote , Homeostasis , Humans , Hydrogen-Ion Concentration , Infant , Ion Transport , Ions , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Macrolides/pharmacology , Magnetic Resonance Imaging , Male , Mice , Mice, Knockout , Microscopy, Video , Transfection
9.
Eur Arch Otorhinolaryngol ; 280(3): 1329-1338, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36209319

ABSTRACT

PURPOSE: This study aimed to report on implementing flexible endoscopic evaluation of swallowing (FEES) in infants and toddlers with type 1 spinal muscular atrophy (SMA). In addition, a comparison of FEES results and clinical scores was carried out. METHODS: A prospective pilot study was conducted including ten symptomatic children with SMA type 1 (two SMN2 copies). They started treatment with one of the three currently approved therapies for SMA at a median age of 3.8 months (range 0.7-8.9). FEES was performed according to a standard protocol using Penetration-Aspiration Scale (PAS) and Murray Secretion Scale as a primary outcome. The Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) for motor function, Neuromuscular Disease Swallowing Status Scale (NdSSS), Oral and Swallowing Abilities Tool (OrSAT), and single clinical swallowing-related parameters were also assessed. RESULTS: Distinct swallowing disorders were already evident in eight children at inclusion. The most common findings from FEES were pharyngeal secretion pooling, penetration, and aspiration of saliva and food as well as delayed initiation of swallowing. Despite an average increase in motor function, no comparable improvement was found in swallowing function. None of the surveyed clinical scores showed a significant dependence on PAS in a mixed linear model. CONCLUSIONS: Valuable information regarding the status of dysphagia can be gathered endoscopically, particularly concerning secretion management and when oral intake is limited. Currently available clinical tools for children with type 1 may represent a change in nutritional status but are not yet mature enough to conclude swallowing ability. Further development is still required.


Subject(s)
Deglutition Disorders , Spinal Muscular Atrophies of Childhood , Infant , Humans , Infant, Newborn , Deglutition , Pilot Projects , Prospective Studies , Spinal Muscular Atrophies of Childhood/complications , Spinal Muscular Atrophies of Childhood/diagnosis , Spinal Muscular Atrophies of Childhood/drug therapy , Deglutition Disorders/diagnosis , Deglutition Disorders/etiology
10.
Hum Genet ; 141(2): 257-272, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34907471

ABSTRACT

Bain type of X-linked syndromic intellectual developmental disorder, caused by pathogenic missense variants in HRNRPH2, was initially described in six female individuals affected by moderate-to-severe neurodevelopmental delay. Although it was initially postulated that the condition would not be compatible with life in males, several affected male individuals harboring pathogenic variants in HNRNPH2 have since been documented. However, functional in-vitro analyses of identified variants have not been performed and, therefore, possible genotype-phenotype correlations remain elusive. Here, we present eight male individuals, including a pair of monozygotic twins, harboring pathogenic or likely pathogenic HNRNPH2 variants. Notably, we present the first individuals harboring nonsense or frameshift variants who, similarly to an individual harboring a de novo p.(Arg29Cys) variant within the first quasi-RNA-recognition motif (qRRM), displayed mild developmental delay, and developed mostly autistic features and/or psychiatric co-morbidities. Additionally, we present two individuals harboring a recurrent de novo p.(Arg114Trp), within the second qRRM, who had a severe neurodevelopmental delay with seizures. Functional characterization of the three most common HNRNPH2 missense variants revealed dysfunctional nucleocytoplasmic shuttling of proteins harboring the p.(Arg206Gln) and p.(Pro209Leu) variants, located within the nuclear localization signal, whereas proteins with p.(Arg114Trp) showed reduced interaction with members of the large assembly of splicing regulators (LASR). Moreover, RNA-sequencing of primary fibroblasts of the individual harboring the p.(Arg114Trp) revealed substantial alterations in the regulation of alternative splicing along with global transcriptome changes. Thus, we further expand the clinical and variant spectrum in HNRNPH2-associated disease in males and provide novel molecular insights suggesting the disorder to be a spliceopathy on the molecular level.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , Mutation , Neurodevelopmental Disorders/genetics , Adolescent , Alternative Splicing/genetics , Amino Acid Substitution , Brain/diagnostic imaging , Child , Child, Preschool , Chromosomes, Human, X/genetics , Codon, Nonsense , Diseases in Twins/diagnostic imaging , Diseases in Twins/genetics , Female , Frameshift Mutation , Genetic Association Studies , Genetic Variation , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Male , Mutation, Missense , Neurodevelopmental Disorders/diagnostic imaging , Phenotype , RNA-Seq , Twins, Monozygotic , Young Adult
11.
Ann Neurol ; 90(5): 738-750, 2021 11.
Article in English | MEDLINE | ID: mdl-34564892

ABSTRACT

OBJECTIVE: Hereditary spastic paraplegia (HSP) is a highly heterogeneous neurologic disorder characterized by lower-extremity spasticity. Here, we set out to determine the genetic basis of an autosomal dominant, pure, and infantile-onset form of HSP in a cohort of 8 patients with a uniform clinical presentation. METHODS: Trio whole-exome sequencing was used in 5 index patients with infantile-onset pure HSP to determine the genetic cause of disease. The functional impact of identified genetic variants was verified using bioinformatics and complementary cellular and biochemical assays. RESULTS: Distinct heterozygous KPNA3 missense variants were found to segregate with the clinical phenotype in 8 patients; in 4 of them KPNA3 variants had occurred de novo. Mutant karyopherin-α3 proteins exhibited a variable pattern of altered expression level, subcellular distribution, and protein interaction. INTERPRETATION: Our genetic findings implicate heterozygous variants in KPNA3 as a novel cause for autosomal dominant, early-onset, and pure HSP. Mutant karyopherin-α3 proteins display varying deficits in molecular and cellular functions, thus, for the first time, implicating dysfunctional nucleocytoplasmic shuttling as a novel pathomechanism causing HSP. ANN NEUROL 2021;90:738-750.


Subject(s)
Mutation/genetics , Spastic Paraplegia, Hereditary/genetics , alpha Karyopherins/genetics , Adult , Child, Preschool , Heterozygote , Humans , Male , Middle Aged , Pedigree , Phenotype , Exome Sequencing/methods , Young Adult
12.
Brain ; 144(7): 2092-2106, 2021 08 17.
Article in English | MEDLINE | ID: mdl-33704440

ABSTRACT

T-type calcium channels (Cav3.1 to Cav3.3) regulate low-threshold calcium spikes, burst firing and rhythmic oscillations of neurons and are involved in sensory processing, sleep, and hormone and neurotransmitter release. Here, we examined four heterozygous missense variants in CACNA1I, encoding the Cav3.3 channel, in patients with variable neurodevelopmental phenotypes. The p.(Ile860Met) variant, affecting a residue in the putative channel gate at the cytoplasmic end of the IIS6 segment, was identified in three family members with variable cognitive impairment. The de novo p.(Ile860Asn) variant, changing the same amino acid residue, was detected in a patient with severe developmental delay and seizures. In two additional individuals with global developmental delay, hypotonia, and epilepsy, the variants p.(Ile1306Thr) and p.(Met1425Ile), substituting residues at the cytoplasmic ends of IIIS5 and IIIS6, respectively, were found. Because structure modelling indicated that the amino acid substitutions differentially affect the mobility of the channel gate, we analysed possible effects on Cav3.3 channel function using patch-clamp analysis in HEK293T cells. The mutations resulted in slowed kinetics of current activation, inactivation, and deactivation, and in hyperpolarizing shifts of the voltage-dependence of activation and inactivation, with Cav3.3-I860N showing the strongest and Cav3.3-I860M the weakest effect. Structure modelling suggests that by introducing stabilizing hydrogen bonds the mutations slow the kinetics of the channel gate and cause the gain-of-function effect in Cav3.3 channels. The gating defects left-shifted and increased the window currents, resulting in increased calcium influx during repetitive action potentials and even at resting membrane potentials. Thus, calcium toxicity in neurons expressing the Cav3.3 variants is one likely cause of the neurodevelopmental phenotype. Computer modelling of thalamic reticular nuclei neurons indicated that the altered gating properties of the Cav3.3 disease variants lower the threshold and increase the duration and frequency of action potential firing. Expressing the Cav3.3-I860N/M mutants in mouse chromaffin cells shifted the mode of firing from low-threshold spikes and rebound burst firing with wild-type Cav3.3 to slow oscillations with Cav3.3-I860N and an intermediate firing mode with Cav3.3-I860M, respectively. Such neuronal hyper-excitability could explain seizures in the patient with the p.(Ile860Asn) mutation. Thus, our study implicates CACNA1I gain-of-function mutations in neurodevelopmental disorders, with a phenotypic spectrum ranging from borderline intellectual functioning to a severe neurodevelopmental disorder with epilepsy.


Subject(s)
Calcium Channels/genetics , Calcium Channels/metabolism , Ion Channel Gating/genetics , Neurodevelopmental Disorders/genetics , Adult , Animals , Brain/metabolism , Brain/pathology , Child , Computer Simulation , Female , Gain of Function Mutation , Genetic Predisposition to Disease/genetics , Humans , Male , Mice , Middle Aged , Models, Molecular , Models, Neurological , Mutation, Missense , Neurons/metabolism , Pedigree , Protein Conformation
13.
BMC Pediatr ; 22(1): 596, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36229869

ABSTRACT

BACKGROUND: Advances in genetic and pharmaceutical technology and pediatric care have enabled treatment options for an increasing number of rare diseases in affected children. However, as current treatment options are primarily of palliative nature, the Health-Related Quality of Life (HRQoL) and mental health of this impaired population and their siblings are of increasing importance. Among children and adolescents with rare diseases, those who are technology-dependent carry a high disease burden and are selected as the target population in our study. In a cross-sectional observational design, the children's HRQoL was assessed with the DISABKIDS (DCGM-37) as well as KIDSCREEN-27, while mental health was assessed with the Strengths and Difficulties Questionnaire (SDQ) by both the affected children, their parents, and siblings. RESULTS: Results of the study sample were compared to normative data. Affected children scored significantly lower than the norm on almost all HRQoL subscales as reported by parent and child. From the parental perspective, more mental health subscales were significantly impaired compared to the child's perspective. Siblings showed no impairment in HRQoL as well as significantly fewer behavioral problems and higher prosocial behavior regarding their mental health compared to the norm. CONCLUSION: Children and adolescents with rare diseases seem particularly impaired in social and emotional aspects of HRQoL and mental health. Interventions may focus primarily on promoting social skills, fostering prosocial behavior and peer relationships.


Subject(s)
Mental Health , Quality of Life , Adolescent , Child , Cost of Illness , Cross-Sectional Studies , Humans , Parents/psychology , Quality of Life/psychology , Rare Diseases , Siblings , Surveys and Questionnaires
14.
J Cell Mol Med ; 25(17): 8419-8431, 2021 09.
Article in English | MEDLINE | ID: mdl-34312963

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic neurodegenerative disorder leading to immobilization and premature death. Currently, three alternative therapeutic options are available. Therefore, biomarkers that might reflect or predict the clinical course of the individual patient with treatment are of great potential use. Currently, the antisense oligonucleotide nusinersen is the prevalent and longest validated therapy for SMA. We analysed CSF candidate biomarkers for degenerative CNS processes (namely phosphorylated heavy chain (pNf-H), light-chain neurofilaments (NfL), total tau protein (T-Tau), neurogranin, ß-secretase BACE-1 and alpha-synuclein) in 193 CSF samples of 44 paediatric SMA types 1, 2 and 3 patients before and under nusinersen treatment and related them to standardized clinical outcome scores in a single-centre pilot study. pNf-H and NfL correlated with disease severity and activity, emphasizing their relevance as marker of neuronal loss and clinical outcome. T-Tau was significantly correlated with motor function scores in SMA type 1 making it an interesting marker for treatment response. Additionally, baseline T-Tau levels were elevated in most SMA patients possibly reflecting the extension of neuronal degeneration in paediatric-onset SMA. Further investigations of these CSF proteins might be beneficial for paediatric SMA subtypes and treatment modalities as an indicator for clinical outcome and should be analysed in larger cohorts.


Subject(s)
Biomarkers/cerebrospinal fluid , Muscular Atrophy, Spinal , Oligonucleotides/administration & dosage , Child, Preschool , Female , Humans , Infant , Male , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/metabolism , Pilot Projects , Severity of Illness Index
15.
Neurogenetics ; 22(4): 263-269, 2021 10.
Article in English | MEDLINE | ID: mdl-34218362

ABSTRACT

ANK3 encodes multiple isoforms of ankyrin-G, resulting in variegated tissue expression and function, especially regarding its role in neuronal development. Based on the zygosity, location, and type, ANK3 variants result in different neurodevelopmental phenotypes. Autism spectrum disorder has been associated with heterozygous missense variants in ANK3, whereas a more severe neurodevelopmental phenotype is caused by isoform-dependent, autosomal-dominant, or autosomal-recessive loss-of-function variants. Here, we present four individuals affected by a variable neurodevelopmental phenotype harboring a heterozygous frameshift or nonsense variant affecting all ANK3 transcripts. Thus, we provide further evidence of an isoform-based phenotypic continuum underlying ANK3-associated pathologies and expand its phenotypic spectrum.


Subject(s)
Ankyrins/genetics , Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Child , Humans , Loss of Heterozygosity , Male , Mutation, Missense/genetics , Phenotype , Protein Isoforms/genetics
16.
Am J Hum Genet ; 103(4): 579-591, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30290153

ABSTRACT

p21-activated kinases (PAKs) are serine/threonine protein kinases acting as effectors of CDC42 and RAC, which are members of the RHO family of small GTPases. PAK1's kinase activity is autoinhibited by homodimerization, whereas CDC42 or RAC1 binding causes PAK1 activation by dimer dissociation. Major functions of the PAKs include actin cytoskeleton reorganization, for example regulation of the cellular protruding activity during cell spreading. We report the de novo PAK1 mutations c.392A>G (p.Tyr131Cys) and c.1286A>G (p.Tyr429Cys) in two unrelated subjects with developmental delay, secondary macrocephaly, seizures, and ataxic gait. We identified enhanced phosphorylation of the PAK1 targets JNK and AKT in fibroblasts of one subject and of c-JUN in those of both subjects compared with control subjects. In fibroblasts of the two affected individuals, we observed a trend toward enhanced PAK1 kinase activity. By using co-immunoprecipitation and size-exclusion chromatography, we observed a significantly reduced dimerization for both PAK1 mutants compared with wild-type PAK1. These data demonstrate that the two PAK1 variants function as activating alleles. In a cell spreading assay, subject-derived fibroblasts showed significant enrichment in cells occupied by filopodia. Interestingly, application of the PAK1 inhibitor FRAX486 completely reversed this cellular phenotype. Together, our data reveal that dominantly acting, gain-of-function PAK1 mutations cause a neurodevelopmental phenotype with increased head circumference, possibly by a combined effect of defective homodimerization and enhanced kinase activity of PAK1. This condition, along with the developmental disorders associated with RAC1 and CDC42 missense mutations, highlight the importance of RHO GTPase members and effectors in neuronal development.


Subject(s)
Gain of Function Mutation/genetics , Neurodevelopmental Disorders/genetics , p21-Activated Kinases/genetics , Actins/genetics , Case-Control Studies , Cell Line , Child , Child, Preschool , Cytoskeleton/genetics , Female , HEK293 Cells , Humans , Male , Myotonin-Protein Kinase/genetics , Phosphorylation/genetics , Signal Transduction/genetics , rac1 GTP-Binding Protein/genetics
17.
Clin Genet ; 100(6): 766-770, 2021 12.
Article in English | MEDLINE | ID: mdl-34490615

ABSTRACT

Neurological symptoms are frequent and often a leading feature of childhood-onset mitochondrial disorders (MD) but the exact incidence of MD in unselected neuropediatric patients is unknown. Their early detection is desirable due to a potentially rapid clinical decline and the availability of management options. In 491 children with neurological symptoms, a comprehensive diagnostic work-up including exome sequencing was performed. The success rate in terms of a molecular genetic diagnosis within our cohort was 51%. Disease-causing variants in a mitochondria-associated gene were detected in 12% of solved cases. In order to facilitate the clinical identification of MDs within neuropediatric cohorts, we have created an easy-to-use bedside-tool, the MDC-NP. In our cohort, the MDC-NP predicted disease conditions related to MDs with a sensitivity of 0.83, and a specificity of 0.96.


Subject(s)
Genetic Predisposition to Disease , Mitochondrial Diseases/epidemiology , Mitochondrial Diseases/genetics , Nervous System Diseases/epidemiology , Nervous System Diseases/genetics , Age Factors , Alleles , Child , Cohort Studies , Genes, Mitochondrial , Genetic Association Studies , Genotype , Humans , Mitochondrial Diseases/diagnosis , Mutation , Nervous System Diseases/diagnosis , Phenotype , Prevalence , Prognosis
18.
Neuropediatrics ; 52(3): 179-185, 2021 06.
Article in English | MEDLINE | ID: mdl-33276405

ABSTRACT

Spinal muscular atrophy (SMA) is a rare neurodegenerative disease leading to progressive muscular atrophy, respiratory failure, and premature death. Secondary thorax and spine deformities are frequent. In July 2017, the antisense oligonucleotide nusinersen (Spinraza) was approved for the recurrent lifelong intrathecal treatment of SMA in Europe. Lumbar punctures are challenging especially in SMA patients with severe spine deformities and after spine surgery. In the light of alternative SMA therapies that are available or are expected to be available soon and which are administered orally or via one-time infusion, an appraisal of the established therapy is significant. Discussion about which therapy is the best for each individual patient will have to include not only the safety and efficacy of data but also the application form and its burden for the patient and the health care system. Therefore, we analyzed our 3-year experiences and challenges with 478 lumbar puncture procedures in 61 pediatric SMA patients with and without spine deformities or instrumentation.


Subject(s)
Muscular Atrophy, Spinal , Neurodegenerative Diseases , Child , Humans , Muscular Atrophy, Spinal/drug therapy , Oligonucleotides , Oligonucleotides, Antisense
19.
Hum Mutat ; 41(4): 837-849, 2020 04.
Article in English | MEDLINE | ID: mdl-31898846

ABSTRACT

IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi-Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate.


Subject(s)
Gain of Function Mutation , Genetic Association Studies , Genotype , Interferon-Induced Helicase, IFIH1/genetics , Phenotype , Alleles , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/genetics , DNA Mutational Analysis , Female , Genetic Association Studies/methods , High-Throughput Nucleotide Sequencing , Humans , Interferon-Induced Helicase, IFIH1/chemistry , Male , Models, Molecular , Nervous System Malformations/diagnosis , Nervous System Malformations/genetics , Protein Conformation , Structure-Activity Relationship
20.
Am J Hum Genet ; 101(5): 716-724, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100085

ABSTRACT

DHX30 is a member of the family of DExH-box helicases, which use ATP hydrolysis to unwind RNA secondary structures. Here we identified six different de novo missense mutations in DHX30 in twelve unrelated individuals affected by global developmental delay (GDD), intellectual disability (ID), severe speech impairment and gait abnormalities. While four mutations are recurrent, two are unique with one affecting the codon of one recurrent mutation. All amino acid changes are located within highly conserved helicase motifs and were found to either impair ATPase activity or RNA recognition in different in vitro assays. Moreover, protein variants exhibit an increased propensity to trigger stress granule (SG) formation resulting in global translation inhibition. Thus, our findings highlight the prominent role of translation control in development and function of the central nervous system and also provide molecular insight into how DHX30 dysfunction might cause a neurodevelopmental disorder.


Subject(s)
Developmental Disabilities/genetics , Mutation, Missense/genetics , RNA Helicases/genetics , Adenosine Triphosphatases/genetics , Adolescent , Amino Acids/genetics , Cell Line , Cell Line, Tumor , Central Nervous System/pathology , Child , Child, Preschool , Female , HEK293 Cells , Humans , Intellectual Disability/genetics , Male , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL