Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Molecules ; 29(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38257228

ABSTRACT

The phytochemical investigation of Cortex Mori Radicis led to the isolation and identification of a new prenylated benzofuranone (1) and four ring-opening derivatives (2-5) named albaphenol A-E, as well as nigranol A (6), together with ten 2-arylbenzofuran derivatives (7-16). The characterization of the structures of the new compounds and the structural revision of nigranol A (6) were conducted using the comprehensive analysis of spectroscopic data (1D/2D NMR, HRESIMS, CD, and XRD). Compounds 1-16 were tested for their inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1 and 4 showed weak BChE-inhibitory activity (IC50 45.5 and 61.0 µM); six 2-arylbenzofuran derivatives showed more-potent BChE-inhibitory activity (IC50 2.5-32.8 µM) than the positive control galantamine (IC50 35.3 µM), while being inactive or weakly inhibitory toward AChE. Cathafuran C (14) exhibited the most potent and selective inhibitory activity against BChE in a competitive manner, with a Ki value of 1.7 µM. The structure-activity relationships of the benzofuran-type stilbenes were discussed. Furthermore, molecular docking and dynamic simulations were performed to clarify the interactions of the inhibitor-enzyme complex.


Subject(s)
Acetylcholinesterase , Benzofurans , Butyrylcholinesterase , Molecular Docking Simulation , Benzofurans/pharmacology , Cerebral Cortex
2.
PLoS Pathog ; 17(2): e1008992, 2021 02.
Article in English | MEDLINE | ID: mdl-33556114

ABSTRACT

Coxsackievirus B3 (CVB3) belongs to the genus Enterovirus of the family Picornaviridae and can cause acute acinar pancreatitis in adults. However, the molecular mechanisms of pathogenesis underlying CVB3-induced acute pancreatitis have remained unclear. In this study, we discovered that CVB3 capsid protein VP1 inhibited pancreatic cell proliferation and exerted strong cytopathic effects on HPAC cells. Through yeast two-hybrid, co-immunoprecipitation, and confocal microscopy, we show that Menage a trois 1 (MAT1), a subunit of the Cdk-Activating Kinase (CAK) complex involved in cell proliferation and transcription, is a novel interaction protein with CVB3 VP1. Moreover, CVB3 VP1 inhibited MAT1 accumulation and localization, thus interfering with its interaction with CDK7. Furthermore, CVB3 VP1 could suppress CAK complex enzymic phosphorylation activity towards RNA Pol II and CDK4/6, direct substrates of CAK. VP1 also suppresses phosphorylation of retinoblastoma protein (pRb), an indirect CAK substrate, especially at phospho-pRb Ser780 and phospho-pRb Ser807/811 residues, which are associated with cell proliferation. Finally, we present evidence using deletion mutants that the C-terminal domain (VP1-D8, 768-859aa) is the minimal VP1 region required for its interaction with MAT1, and furthermore, VP1-D8 alone was sufficient to arrest cells in G1/S phase as observed during CVB3 infection. Taken together, we demonstrate that CVB3 VP1 can inhibit CAK complex assembly and activity through direct interaction with MAT1, to block MAT1-mediated CAK-CDK4/6-Rb signaling, and ultimately suppress cell proliferation in pancreatic cells. These findings substantially extend our basic understanding of CVB3-mediated pancreatitis, providing strong candidates for strategic therapeutic targeting.


Subject(s)
Capsid Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Proliferation , Coxsackievirus Infections/complications , Cyclin-Dependent Kinases/metabolism , Enterovirus B, Human/pathogenicity , Pancreatitis/pathology , Transcription Factors/metabolism , Capsid Proteins/genetics , Cell Cycle Checkpoints , Cell Cycle Proteins/genetics , Cell Differentiation , Coxsackievirus Infections/virology , Cyclin-Dependent Kinases/genetics , Humans , Pancreatitis/metabolism , Pancreatitis/virology , Phosphorylation , Transcription Factors/genetics , Cyclin-Dependent Kinase-Activating Kinase
3.
Microb Cell Fact ; 21(1): 72, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477497

ABSTRACT

Engineered probiotics are a kind of new microorganisms produced by modifying original probiotics through gene editing. With the continuous development of tools and technology progresses, engineering renovation of probiotics are becoming more diverse and more feasible. In the past few years there have been some advances in the development of engineered probiotics that will benefit humankind. This review briefly introduces the theoretical basis of gene editing technology and focuses on some recent engineered probiotics researches, including inflammatory bowel disease, bacterial infection, tumor and metabolic diseases. It is hoped that it can provide help for the further development of genetically modified microorganisms, stimulate the potential of engineered probiotics to treat intractable diseases, and provide new ideas for the diagnosis of some diseases or some industrial production.


Subject(s)
Bacterial Infections , Inflammatory Bowel Diseases , Metabolic Diseases , Probiotics , Humans , Inflammatory Bowel Diseases/therapy , Probiotics/therapeutic use
4.
Environ Sci Technol ; 56(10): 6201-6211, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35107260

ABSTRACT

Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) is a novel fluorosurfactant used as the alternative to perfluorooctanesulfonic acid (PFOS) in several applications such as fire-fighting foams and chemical enhanced oil recovery ("EOR") in China, with the annual production capacity of about 3,500 t. Here, for the first time, we investigated the degradability of OBS under the conditions of UV/persulfate (UV/PS) and UV/sulfite (UV/SF) as typical redox processes. A higher reaction rate (1.05 min-1) and total organic carbon (TOC) reduction (46.9%) but a low defluorination rate (27.6%) along with the formation of a series of fluorinated intermediates were found in UV/PS, while a high defluorination rate (87.7%) was realized in UV/SF. In particular, a nontargeted workflow using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS) was established to detect fluorinated intermediates. Combined with the theoretical calculation, the distinctive degradation pathways in both oxidation and reduction processes were proposed. The degradation mechanism of OBS in UV/SF was proposed to be H/F exchange and subsequent HF elimination. Furthermore, the diluted OBS-based fluoroprotein (FP) foam was used to investigate the degradation of OBS, which confirms the treatability using the redox approach. This work provides insights into the degradability of OBS, fluorinated intermediate search, and proper treatment of related contamination.


Subject(s)
Water Pollutants, Chemical , Aerosols , Chromatography, High Pressure Liquid , Oxidation-Reduction , Sodium , Sulfites , Ultraviolet Rays , Water Pollutants, Chemical/analysis
5.
Am J Respir Crit Care Med ; 203(1): 90-101, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32730093

ABSTRACT

Rationale: Early pathogenesis of lung adenocarcinoma (LUAD) remains largely unknown. We found that, relative to wild-type littermates, the innate immunomodulator Lcn2 (lipocalin-2) was increased in normal airways from mice with knockout of the airway lineage gene Gprc5a (Gprc5a-/-) and that are prone to developing inflammation and LUAD. Yet, the role of LCN2 in lung inflammation and LUAD is poorly understood.Objectives: Delineate the role of Lcn2 induction in LUAD pathogenesis.Methods: Normal airway brushings, uninvolved lung tissues, and tumors from Gprc5a-/- mice before and after tobacco carcinogen exposure were analyzed by RNA sequencing. LCN2 mRNA was analyzed in public and in-house data sets of LUAD, lung squamous cancer (LUSC), chronic obstructive pulmonary disease (COPD), and LUAD/LUSC with COPD. LCN2 protein was immunohistochemically analyzed in a tissue microarray of 510 tumors. Temporal lung tumor development, gene expression programs, and host immune responses were compared between Gprc5a-/- and Gprc5a-/-/Lcn2-/- littermates.Measurements and Main Results:Lcn2 was progressively elevated during LUAD development and positively correlated with proinflammatory cytokines and inflammation gene sets. LCN2 was distinctively elevated in human LUADs, but not in LUSCs, relative to normal lungs and was associated with COPD among smokers and patients with LUAD. Relative to Gprc5a-/- mice, Gprc5a-/-/Lcn2-/- littermates exhibited significantly increased lung tumor development concomitant with reduced T-cell abundance (CD4+) and richness, attenuated antitumor immune gene programs, and increased immune cell expression of protumor inflammatory cytokines.Conclusions: Augmented LCN2 expression is a molecular feature of COPD-associated LUAD and counteracts LUAD development in vivo by maintaining antitumor immunity.


Subject(s)
Adenocarcinoma of Lung/immunology , Antineoplastic Agents/immunology , Lipocalin-2/genetics , Lipocalin-2/immunology , Lung Neoplasms/immunology , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/physiopathology , Animals , Biomarkers/blood , Female , Gene Expression Regulation , Humans , Lipocalin-2/blood , Male , Mice , RNA, Messenger
6.
J Med Internet Res ; 24(1): e26308, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35099401

ABSTRACT

BACKGROUND: The internet has become one of the most important channels for residents to seek health information, particularly in remote rural areas in China. OBJECTIVE: In this study, we aimed to explore the gap between self-rated health information literacy and internet health information seeking ability for patients with chronic diseases in rural communities and to preliminarily evaluate their barriers when seeking health information via the internet. METHODS: Residents from rural communities near Bengbu City and with chronic diseases were included in this study. A self-rated questionnaire was used to evaluate their health information literacy, 3 behavioral competency tasks were designed to preliminarily evaluate their ability to seek health information on the internet and semistructured interviews were used to investigate their barriers to obtaining health information via the internet. A small audiorecorder was used to record the interview content, and screen-recording software was used to record the participants' behavior during the web-based operational tasks. RESULTS: A total of 70 respondents completed the self-rated health information literacy questionnaire and the behavioral competence test, and 56 respondents participated in the semistructured interviews. Self-rated health information literacy (score out of 70: mean 46.21, SD 4.90) of the 70 respondents were moderate. Although 91% (64/70) of the respondents could find health websites, and 93% (65/70) of the respondents could find information on treatment that they thought was the best, 35% (23/65) of respondents did not know how to save the results they had found. The operational tasks indicated that most articles selected by the respondents came from websites with encyclopedic knowledge or answers from people based on their own experiences rather than authoritative health information websites. After combining the results of the semistructured interviews with the DISCERN scale test results, we found that most interviewees had difficulty obtaining high-quality health information via the internet. CONCLUSIONS: Although the health information literacy level of patients with rural chronic disease was moderate, they lack the ability to access high-quality health information via the internet. The vast majority of respondents recognized the importance of accessing health information but were not very proactive in accessing such information.


Subject(s)
Health Literacy , Telemedicine , Chronic Disease , Cross-Sectional Studies , Health Literacy/methods , Humans , Information Seeking Behavior , Internet , Rural Population , Surveys and Questionnaires , Telemedicine/methods
7.
Phytother Res ; 36(10): 3833-3858, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35932157

ABSTRACT

The corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus type 2 (SARS-COV-2) poses a severe threat to human health and still spreads globally. Due to the high mutation ratio and breakthrough infection rate of the virus, vaccines and anti-COVID-19 drugs require continual improvements. Drug screening research has shown that some natural active products can target the critical proteins of SARS-CoV-2, including 3CLpro, ACE2, FURIN, and RdRp, which could produce great inhibitory effects on SARS-COV-2. In addition, some natural products have displayed activities of immunomodulation, antiinflammatory, and antihepatic failure in COVID-19 clinical trials, which may relate to their non-monomeric structures. However, further evaluation and high-quality assessments, including safety verification tests, drug interaction tests, and clinical trials, are needed to substantiate natural products' multi-target and multi-pathway effects on COVID-19. Here, we review the literature on several promising active natural products that may act as vaccine immune enhancers or provide targeted anti-COVID-19 drugs. The structures, mechanisms of action, and research progress of these natural products are analyzed, to hopefully provide effective ideas for the development of targeted drugs that possess better structure, potency, and safety.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Angiotensin-Converting Enzyme 2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Furin , Humans , RNA-Dependent RNA Polymerase , SARS-CoV-2
8.
Water Sci Technol ; 85(4): 1011-1026, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35228350

ABSTRACT

Motivated by the observation that vortex flow structure was evident in the energy loss at the surcharged junction manhole due to changes of hydraulic and geometrical parameters, a physical model was used to calculate energy loss coefficients and investigate the relationship between flow structure and energy loss at the surcharged three-way junction manhole. The effects of the flow discharge ratio, the connected angle between two inflow pipes, the manhole geometry, and the downstream water depth on the energy loss were analyzed based on the quantified energy loss coefficients and the identified flow structure. Moreover, two empirical formulae for head loss coefficients were validated by the experimental data. Results indicate that the effect of flow discharge ratio and connected angle are significant, while the effect of downstream water depth is not obvious. With the increase of the lateral inflow discharge, the flow velocity distribution and vortex structure are both enhanced. It is also found that a circular manhole can reduce local energy loss when compared to a square manhole. In addition, the tested empirical formulae can reproduce the trend of total head loss coefficient.


Subject(s)
Drainage, Sanitary , Water Movements , Drainage, Sanitary/methods , Water
9.
J Cell Mol Med ; 25(2): 827-839, 2021 01.
Article in English | MEDLINE | ID: mdl-33249703

ABSTRACT

Previously, we identified differentially expressed proteins, including ADFP, between lung adenocarcinoma (LAC) tissue and paired normal bronchioloalveolar epithelium. In this study, we investigated the role of ADFP in LAC. ADFP levels in the serum of patients with lung cancer and benign diseases were measured by enzyme-linked immunosorbent assays (ELISA). shRNA was used to knock-down or overexpress ADFP in A549 and NCI-H1299 cells. The biological function of ADFP and its underlying mechanisms was evaluated in vivo and in vitro. ADFP was highly expressed in the serum of lung cancer patients, especially those with LAC. ADFP promoted cell proliferation and up-regulated the p-Akt/Akt ratio in A549 and NCI-H1299 cells in vitro. Furthermore, in nude mice, ADFP promoted tumour formation with high levels of p-Akt/Akt, Ki67 and proliferating cell nuclear antigen (PCNA). Similar to the effect of ADFP knock-down, MK-2206 (a phosphorylation inhibitor of Akt) reduced A549 and NCI-H1299 cell proliferation. In ADFP-overexpressing A549 and NCI-H1299 cells, proliferation was suppressed by MK-2206 and returned to the control level. ADFP did not regulate invasion, migration or adhesion in LAC cells. Together, these results suggest that ADFP promotes LAC cell proliferation in vitro and in vivo by increasing Akt phosphorylation level.


Subject(s)
Adenocarcinoma of Lung/metabolism , Lung Neoplasms/metabolism , Perilipin-2/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Wound Healing/physiology , A549 Cells , Adenocarcinoma of Lung/genetics , Animals , Cell Line, Tumor , Female , Flow Cytometry , Humans , Lung Neoplasms/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Perilipin-2/genetics , Proliferating Cell Nuclear Antigen/genetics , Proto-Oncogene Proteins c-akt/genetics , Real-Time Polymerase Chain Reaction , Wound Healing/genetics
10.
Carcinogenesis ; 41(11): 1529-1542, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32603404

ABSTRACT

K-ras mutant lung adenocarcinoma (LUAD) is the most common type of lung cancer, displays abysmal prognosis and is tightly linked to tumor-promoting inflammation, which is increasingly recognized as a target for therapeutic intervention. We have recently shown a gender-specific role for epithelial Stat3 signaling in the pathogenesis of K-ras mutant LUAD. The absence of epithelial Stat3 in male K-ras mutant mice (LR/Stat3Δ/Δ mice) promoted tumorigenesis and induced a nuclear factor-kappaB (NF-κB)-driven pro-tumor immune response while reducing tumorigenesis and enhancing anti-tumor immunity in female counterparts. In the present study, we manipulated estrogen and NF-κB signaling to study the mechanisms underlying this intriguing gender-disparity. In LR/Stat3Δ/Δ females, estrogen deprivation by bilateral oophorectomy resulted in higher tumor burden, an induction of NF-κB-driven immunosuppressive response, and reduced anti-tumor cytotoxicity, whereas estrogen replacement reversed these changes. On the other hand, exogenous estrogen in males successfully inhibited tumorigenesis, attenuated NF-κB-driven immunosuppression and boosted anti-tumor immunity. Mechanistically, genetic targeting of epithelial NF-κB activity resulted in reduced tumorigenesis and enhanced the anti-tumor immune response in LR/Stat3Δ/Δ males, but not females. Our data suggest that estrogen exerts a context-specific anti-tumor effect through inhibiting NF-κB-driven tumor-promoting inflammation and provide insights into developing novel personalized therapeutic strategies for K-ras mutant LUAD.


Subject(s)
Adenocarcinoma of Lung/immunology , Cell Transformation, Neoplastic/immunology , Estrogens/metabolism , Immunomodulation , Lung Neoplasms/immunology , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Animals , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Female , Humans , Immunity/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mutation , NF-kappa B/genetics , Proto-Oncogene Proteins p21(ras)/genetics , STAT3 Transcription Factor/genetics , Tumor Cells, Cultured
11.
Bioorg Chem ; 103: 104188, 2020 10.
Article in English | MEDLINE | ID: mdl-32890995

ABSTRACT

The lysophospholipase D autotaxin (ATX) generates lysophosphatidic acid (LPA) that activates six cognate G-protein coupled receptors (GPCR) in cancerous cells, promoting their motility and invasion. Four novel compounds were generated aided by molecular docking guided design and synthesis techniques to obtain new dual inhibitors of ATX and the lysophosphatidic acid receptor subtype 1 (LPAR1). Biological evaluation of these compounds revealed two compounds, 10 and 11, as new ATX enzyme inhibitors with potencies in the range of 218-220 nM and water solubility (>100 µg/mL), but with no LPAR1 inhibitory activity. A QSAR model was generated that included four newly designed compounds and twenty-one additional compounds that we have reported previously. The QSAR model provided excellent predictability of the pharmacological activity and potency among structurally related drug candidates. This model will be highly useful in guiding the synthesis of new ATX inhibitors in the future.


Subject(s)
Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Pyrans/pharmacology , Animals , Cell Line, Tumor , Humans , Molecular Docking Simulation , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/metabolism , Protein Binding , Pyrans/chemical synthesis , Pyrans/metabolism , Quantitative Structure-Activity Relationship , Rats , Receptors, Lysophosphatidic Acid/metabolism
12.
Med Res Rev ; 39(4): 1398-1426, 2019 07.
Article in English | MEDLINE | ID: mdl-30746734

ABSTRACT

Microtubule (MT)-targeting agents are highly successful drugs as chemotherapeutic agents, and this is attributed to their ability to target MT dynamics and interfere with critical cellular functions, including, mitosis, cell signaling, intracellular trafficking, and angiogenesis. Because MT dynamics vary in the different stages of the cell cycle, these drugs tend to be the most effective against mitotic cells. While this class of drug has proven to be effective against many cancer types, significant hurdles still exist and include overcoming aspects such as dose limited toxicities and the development of resistance. Newer generations of developed drugs attack these problems and alternative approaches such as the development of dual tubulin and kinase inhibitors are being investigated. This approach offers the potential to show increased efficacy and lower toxicities. This review covers different categories of MT-targeting agents, recent advances in dual inhibitors, and current challenges for this drug target.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Tubulin Modulators/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Microtubules/drug effects , Tubulin Modulators/therapeutic use
13.
Vet Res ; 50(1): 22, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30894203

ABSTRACT

Nuclear localization of paramyxovirus proteins is crucial for virus life cycle, including the regulation of viral replication and the evasion of host immunity. We previously showed that a recombinant Newcastle disease virus (NDV) with nuclear localization signal mutation in the matrix (M) protein results in a pathotype change and attenuates viral pathogenicity in chickens. However, little is known about the nuclear localization functions of NDV M protein. In this study, the potential functions of the M protein in the nucleus were investigated. We first demonstrate that nuclear localization of the M protein could not only promote the cytopathogenicity of NDV but also increase viral RNA synthesis and transcription efficiency in DF-1 cells. Using microarray analysis, we found that nuclear localization of the M protein might inhibit host cell transcription, represented by numerous up-regulating genes associated with transcriptional repressor activity and down-regulating genes associated with transcriptional activator activity. The role of representative up-regulated gene prospero homeobox 1 (PROX1) and down-regulated gene aryl hydrocarbon receptor (AHR) in the replication of NDV was then evaluated. The results show that siRNA-mediated knockdown of PROX1 or AHR significantly reduced or increased the viral RNA synthesis and viral replication, respectively, demonstrating the important roles of the expression changes of these genes in NDV replication. Together, our findings demonstrate for the first time that nuclear localization of NDV M protein promotes virus replication by affecting viral RNA synthesis and transcription and inhibiting host cell transcription, improving our understanding of the molecular mechanism of NDV replication and pathogenesis.


Subject(s)
Fibroblasts/virology , Nuclear Matrix-Associated Proteins/physiology , Protein Transport/physiology , RNA, Viral/metabolism , Transcription, Genetic , Virus Replication/physiology , Animals , Cell Line , Chickens , Gene Expression Regulation, Viral/physiology , Newcastle disease virus , RNA, Viral/genetics
14.
Environ Sci Technol ; 52(20): 11728-11734, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30207460

ABSTRACT

Hexafluoropropylene oxide dimer acid (HFPO-DA, ammonium salt with trade name: GenX) has been recently detected in river water worldwide. There are significant concerns about its persistence, and potential adverse effects to the biota. In this study, the degradability of GenX by typical advanced redox technologies (UV/persulfate and UV/sulfate) is investigated. Results demonstrate that <5% GenX is oxidized after 3 h in UV/persulfate system, which is much lower than ∼27% for PFOA. In comparison, GenX can be readily degraded and defluorinated by hydrated electron (eaq-) generated by UV/sulfite system. Specifically, GenX is not detectable after 2 h, and >90% of fluoride ion is recovered 6 h later. This is attributed to the accumulation and subsequent degradation of CF3CF2COOH and CF3COOH, which are stable intermediates of GenX degradation. Mechanistic investigations suggest that the etheric bond in the molecule is a favorable attack point for the eaq-. Such finding is corroborated by quantum chemical calculations. The side CF3- at the α-carbon probably acts as an effective barrier that prevents GenX from being cleaved by SO4-• or OH• at its most sensible point (i.e. the carboxyl group). This study illustrates that reduction by UV/sulfite might be a promising technology to remove GenX from contaminated water.


Subject(s)
Ammonium Compounds , Water Pollutants, Chemical , Oxidation-Reduction , Sulfates , Sulfites
16.
Dev Biol ; 381(1): 38-49, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23796905

ABSTRACT

Tissue factor pathway inhibitor-2 (Tfpi-2) is an important serine protease inhibitor in the extracellular matrix (ECM), but its precise physiological significance remains unknown. This work is part of a series of studies intended to investigate functional roles of Tfpi-2 and explore the underlying molecular mechanisms. First, we cloned and identified zebrafish Tfpi-2 (zTfpi-2) as an evolutionarily conserved protein essential for zebrafish development. We also demonstrated that ztfpi-2 is mainly expressed in the central nervous system (CNS) of zebrafish, and embryonic depletion of ztfpi-2 caused severe CNS defects. In addition, changes of neural markers, including pax2a, egr2b, huC, ngn1, gfap and olig2, confirmed the presence of developmental abnormalities in the relevant regions of ztfpi-2 morphants. Using microarray analysis, we found that members of the Notch pathway, especially her4 and mib, which mediate lateral inhibition in CNS development, were also downregulated. Intriguingly, both her4 and mib were able to partially rescue the ztfpi-2 morphant phenotype. Furthermore, Morpholino knockdown of ztfpi-2 resulted in upregulation of neuronal markers while downregulation of glial markers, providing evidence that the Notch pathway is probably involved in ztfpi-2-mediated CNS development.


Subject(s)
Central Nervous System/embryology , Gene Expression Regulation, Developmental , Glycoproteins/physiology , Proteinase Inhibitory Proteins, Secretory/physiology , Zebrafish Proteins/physiology , Zebrafish/embryology , Amino Acid Sequence , Animals , Cloning, Molecular , DNA, Complementary/metabolism , Gene Expression Profiling , Green Fluorescent Proteins/metabolism , In Situ Hybridization , Molecular Sequence Data , Neurons/metabolism , Oligonucleotide Array Sequence Analysis , Phenotype , Receptors, Notch/metabolism , Sequence Homology, Amino Acid , Signal Transduction
17.
J Cancer ; 15(9): 2712-2730, 2024.
Article in English | MEDLINE | ID: mdl-38577591

ABSTRACT

Background: ASB6, an E3 ubiquitin ligase, mediates the proteasomal degradation of its substrate proteins via the ubiquitin-proteasome pathway. ASB6 has been reported to play significant roles in several biological processes, including tumor stemness and endoplasmic reticulum stress. However, the underlying role and mechanism of ASB6 in colorectal cancer, particularly its association with immune infiltration levels and its prognostic significance, remain to be fully elucidated. Methods: We identified key prognostic genes in CRC patients through LASSO-penalized Cox regression, Univariate and Multivariate Cox regression analyses. Subsequently, we comprehensively analyzed the prognostic value of hub genes and constructed a prognostic nomogram. Finally, we identified ASB6 interacting proteins through immunoprecipitation-mass spectrometry (IP-MS) and constructed protein-protein interaction (PPI) networks and performed pathway enrichment analysis to explore the potential mechanisms of ASB6. Meanwhile, we evaluated the functions of ASB6 in CRC cells through in vitro cell experiments. Results: We identified ASB6 as a hub gene in CRC. ASB6 was highly expressed in CRC, and patients with high ASB6 expression had worse Disease-Free Interval (DFI), Disease-Specific Survival (DSS), Overall Survival (OS), and Progression-Free Interval (PFI). Correlation analysis showed that ASB6 expression were positively correlated with lymph node invasion and distal metastasis. Overexpression of ASB6 enhanced the migration ability of CRC cells. Multivariate Cox regression analysis revealed that ASB6 was an independent prognostic factor for OS and DSS in CRC. The nomogram model constructed based on multivariate analysis results had good predictive effects, with C-indexes of 0.811 and 0.934 for OS and DSS, respectively. Furthermore, analysis of immune infiltration levels showed that ASB6 expression were positively correlated with M2-type macrophage infiltration levels in CRC, and patients with high levels of both ASB6 and M2-type macrophages had a worse prognosis. Furthermore, pathway enrichment analysis of ASB6 interacting proteins identified by IP-MS suggested that ASB6 may play a crucial role through the response to unfolded protein pathway and protein processing in the endoplasmic reticulum pathway. Conclusions: ASB6 is significantly upregulated in CRC tissues and is a risk factor for prognosis in CRC patients. ASB6 enhances the migration ability of CRC cells. Therefore, ASB6 may be an independent prognostic biomarker and potential therapeutic target for CRC patients.

18.
Cardiovasc Toxicol ; 24(6): 587-597, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691303

ABSTRACT

Vascular lesions frequently arise as complication in patients diagnosed with diabetes mellitus (DM). Presently, percutaneous coronary intervention (PCI) and antithrombotic therapy serve as primary treatments. However, in-stent restenosis persists as a challenging clinical issue following PCI, lacking sustained and effective treatment. Linarin (LN) exhibits diverse pharmacological activities and is regarded as a potential drug for treating various diseases, including DM. But its specific role in restenosis after vascular injury in DM patients remains unclear. A rat model of diabetes-related restenosis was established to evaluate the role of LN on neointimal hyperplasia. Vascular smooth muscle cells (VSMCs) stimulated by high glucose (HG, 30 mM) underwent LN treatment. Additionally, an overexpression plasmid of A disintegrin and metalloproteinases (ADAM10) was constructed to transfect VSMCs. We employed CCK-8, Brdu, wound-healing scratch, and transwell migration assays to evaluate the proliferation and migration of VSMCs. Furthermore, western blot and immunofluorescence assays were utilized to investigate the expressions of ADAM10 and the downstream Notch signaling pathway in vivo and in vitro models. LN notably alleviated intimal hyperplasia after vascular injury in DM rats and reduced the protein expression of ADAM10, alongside its downstream Notch1 signaling pathway-related proteins (Notch1, NICD and Hes1) in rat carotid artery tissues. LN effectively suppressed the proliferation and migration of VSMCs induced by HG, downregulating the protein expression of ADAM10, Notch1, NICD and Hes1. Moreover, our findings indicated that ADAM10 overexpression significantly reversed LN's effects on proliferation, migration, and the expression of Notch1 signaling pathway-related proteins in HG-treated VSMCs. LN demonstrates potential therapeutic efficacy in addressing restenosis after diabetic-related vascular injury, with the ADAM10 mediated Notch signaling pathway playing a pivotal role.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Carotid Artery Injuries , Cell Movement , Cell Proliferation , Diabetes Mellitus, Experimental , Membrane Proteins , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Neointima , Rats, Sprague-Dawley , Signal Transduction , Animals , ADAM10 Protein/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/enzymology , Cell Movement/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/enzymology , Cell Proliferation/drug effects , Male , Membrane Proteins/metabolism , Membrane Proteins/genetics , Amyloid Precursor Protein Secretases/metabolism , Cells, Cultured , Carotid Artery Injuries/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/drug therapy , Carotid Artery Injuries/enzymology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Hyperplasia , Receptors, Notch/metabolism , Receptor, Notch1/metabolism , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics , Disease Models, Animal , Rats , Coronary Restenosis/pathology , Coronary Restenosis/etiology , Coronary Restenosis/metabolism , Coronary Restenosis/prevention & control
19.
Sci Total Environ ; 921: 170983, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38367718

ABSTRACT

Reservoirs play a crucial role in regulating runoff and generating energy. However, they also lead to significant sedimentation in the reservoir area. In this study, we propose an integrated model that combines a 1-D hydro- and sediment dynamic module with a power generation module. The model considers both suspended and bed load transports. This model is applied to the Three Gorges Reservoir (TGR) and evaluate its performance against corresponding measurements. The results demonstrate that:① the proposed model accurately reproduces the processes of flow and sediment transport, bed deformation, and power generation during the hydrological years of 2019 and 2020. The relative errors for average discharge and bed deformation volume are <6 % and 10 %, respectively. Moreover, the calculated total power (982 × 108-1115 × 108 kW·h) closely agree with the measured values (969 × 108-1118 × 108 kW·h); ② the inflows of small tributaries have a noticeable impact on the calculated water discharge in the TGR. This impact will lead to a 16 % increase in average discharge and alter the magnitudes and occurrence times of flood peaks; ③ the flocculation of fine sediment particles significantly affects sediment transport, particularly in the sub-reach close to the dam. This flocculation will result in a 37 %-57 % reduction in average suspended sediment discharge and a 63 %-93 % reduction in peak sediment discharge. This research provides a comprehensive tool for simulating flow and sediment transport as well as power generation, which can support the optimal regulation of the TGR.

20.
Environ Sci Ecotechnol ; 20: 100403, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38550764

ABSTRACT

Evaluating environmental flow (EF) is pivotal for conserving and restoring riverine ecosystems. Yet, prevalent EF evaluations presume that a river reach's hydraulic conditions are exclusively governed by inflow discharge, presupposing a state of equilibrium in the river channel. This presumption narrows the scope of EF evaluations in expansive alluvial rivers like the Middle Yangtze River (MYR), characterized by marked channel alterations. Here we show the profound channel erosion process and its impact on EF requirements for riparian habitats within the MYR. Our research unveils that: (i) pronounced erosion has led to a mean reduction of 1.0-2.7 m in the riverbed across four sub-reaches of the MYR; (ii) notwithstanding a 37-107% increase in minimal discharges post the Three Gorges Project, the lowest river stages at some hydrometric stations diminished owing to bed erosion, signifying a notable transformation in MYR's hydraulic dynamics; (iii) a discernible rightward shift in the correlation curve between the weighted useable area and discharge from 2002 to 2020 in a specific sub-reach of the MYR, instigated by alterations in hydraulic conditions, necessitated an increase of 1500-2600 m³ s-1 in the required EF for the sub-reach; (iv) it is deduced that macroinvertebrate biomass rapidly decreases as the flow entrains the riverbed substrate, with the maximum survivable velocity for macroinvertebrates being contingent on their entrainment threshold. These findings highlight the importance of incorporating channel morphological changes in devising conservation strategies for the MYR ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL