Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cereb Cortex ; 33(4): 1527-1535, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36790361

ABSTRACT

Understanding how structural connectivity alterations affect aberrant dynamic function using network control theory will provide new mechanistic insights into the pathophysiology of schizophrenia. The study included 140 drug-naive schizophrenia patients and 119 healthy controls (HCs). The average controllability (AC) quantifying capacity of brain regions/networks to shift the system into easy-to-reach states was calculated based on white matter connectivity and was compared between patients and HCs as well as functional network topological and dynamic properties. The correlation analysis between AC and duration of untreated psychosis (DUP) were conducted to characterize the controllability progression pattern without treatment effects. Relative to HCs, patients exhibited reduced AC in multiple nodes, mainly distributed in default mode network (DMN), visual network (VN), and subcortical regions, and increased AC in somatomotor network. These networks also had impaired functional topology and increased temporal variability in dynamic functional connectivity analysis. Longer DUP was related to greater reductions of AC in VN and DMN. The current study highlighted potential structural substrates underlying altered functional dynamics in schizophrenia, providing a novel understanding of the relationship of anatomic and functional network alterations.


Subject(s)
Schizophrenia , White Matter , Humans , Schizophrenia/diagnostic imaging , White Matter/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging , Brain/diagnostic imaging
2.
BMC Psychiatry ; 22(1): 26, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35012507

ABSTRACT

BACKGROUND: Recent neuroimaging studies revealed dysregulated neurodevelopmental, or/and neurodegenerative trajectories of both structural and functional connections in schizophrenia. However, how the alterations in the brain's structural connectivity lead to dynamic function changes in schizophrenia with age remains poorly understood. METHODS: Combining structural magnetic resonance imaging and a network control theory approach, the white matter network controllability metric (average controllability) was mapped from age 16 to 60 years in 175 drug-naïve schizophrenia patients and 155 matched healthy controls. RESULTS: Compared with controls, the schizophrenia patients demonstrated the lack of age-related decrease on average controllability of default mode network (DMN), as well as the right precuneus (a hub region of DMN), suggesting abnormal maturational development process in schizophrenia. Interestingly, the schizophrenia patients demonstrated an accelerated age-related decline of average controllability in the subcortical network, supporting the neurodegenerative model. In addition, compared with controls, the lack of age-related increase on average controllability of the left inferior parietal gyrus in schizophrenia patients also suggested a different pathway of brain development. CONCLUSIONS: By applying the control theory approach, the present study revealed age-related changes in the ability of white matter pathways to control functional activity states in schizophrenia. The findings supported both the developmental and degenerative hypotheses of schizophrenia, and suggested a particularly high vulnerability of the DMN and subcortical network possibly reflecting an illness-related early marker for the disorder.


Subject(s)
Schizophrenia , Adolescent , Adult , Brain/diagnostic imaging , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Neural Pathways/diagnostic imaging , Schizophrenia/diagnostic imaging , Young Adult
3.
Schizophr Bull ; 49(3): 659-668, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36402458

ABSTRACT

BACKGROUND AND HYPOTHESIS: Disrupted control of brain state transitions may contribute to the diverse dysfunctions of cognition, emotion, and behavior that are fundamental to schizophrenia. Control theory provides the rationale for evaluating brain state transitions from a controllability perspective, which may help reveal the brain mechanism for clinical features such as cognitive control deficits associated with schizophrenia. We hypothesized that brain controllability would be altered in patients with schizophrenia, and that controllability of brain networks would be related to clinical symptomatology. STUDY DESIGN: Controllability measurements of functional brain networks, including average controllability and modal controllability, were calculated and compared between 125 first-episode never-treated patients with schizophrenia and 133 healthy controls (HCs). Associations between controllability metrics and clinical symptoms were evaluated using sparse canonical correlation analysis. STUDY RESULTS: Compared to HCs, patients showed significantly increased average controllability (PFDR = .023) and decreased modal controllability (PFDR = .023) in dorsal anterior cingulate cortex (dACC). General psychopathology symptoms and positive symptoms were positively correlated with average controllability in regions of default mode network and negatively associated with average controllability in regions of sensorimotor, dorsal attention, and frontoparietal networks. CONCLUSIONS: Our findings suggest that altered controllability of functional activity in dACC may play a critical role in the pathophysiology of schizophrenia, consistent with the importance of this region in cognitive and brain state control operations. The demonstration of associations of functional controllability with psychosis symptoms suggests that the identified alterations in average controllability of brain function may contribute to the severity of acute psychotic illness in schizophrenia.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/pathology , Clinical Relevance , Magnetic Resonance Imaging , Brain
4.
Commun Biol ; 5(1): 295, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365757

ABSTRACT

The brain's functional connectivity fluctuates over time instead of remaining steady in a stationary mode even during the resting state. This fluctuation establishes the dynamical functional connectivity that transitions in a non-random order between multiple modes. Yet it remains unexplored how the transition facilitates the entire brain network as a dynamical system and what utility this mechanism for dynamic reconfiguration can bring over the widely used graph theoretical measurements. To address these questions, we propose to conduct an energetic analysis of functional brain networks using resting-state fMRI and behavioral measurements from the Human Connectome Project. Through comparing the state transition energy under distinct adjacent matrices, we justify that dynamic functional connectivity leads to 60% less energy cost to support the resting state dynamics than static connectivity when driving the transition through default mode network. Moreover, we demonstrate that combining graph theoretical measurements and our energy-based control measurements as the feature vector can provide complementary prediction power for the behavioral scores (Combination vs. Control: t = 9.41, p = 1.64e-13; Combination vs. Graph: t = 4.92, p = 3.81e-6). Our approach integrates statistical inference and dynamical system inspection towards understanding brain networks.


Subject(s)
Connectome , Conservation of Energy Resources , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL