Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Nanobiotechnology ; 22(1): 75, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408974

ABSTRACT

The capacity to identify small amounts of pathogens in real samples is extremely useful. Herein, we proposed a sensitive platform for detecting pathogens using cyclic DNA nanostructure@AuNP tags (CDNA) and a cascade primer exchange reaction (cPER). This platform employs wheat germ agglutinin-modified Fe3O4@Au magnetic nanoparticles (WMRs) to bind the E. coli O157:H7, and then triggers the cPER to generate branched DNA products for CDNA tag hybridization with high stability and amplified SERS signals. It can identify target pathogens as low as 1.91 CFU/mL and discriminate E. coli O157:H7 in complex samples such as water, milk, and serum, demonstrating comparable or greater sensitivity and accuracy than traditional qPCR. Moreover, the developed platform can detect low levels of E. coli O157:H7 in mouse serum, allowing the discrimination of mice with early-stage infection. Thus, this platform holds promise for food analysis and early infection diagnosis.


Subject(s)
Escherichia coli O157 , Nanoparticles , Animals , Mice , DNA, Complementary , DNA , Escherichia coli O157/genetics , Food Microbiology
2.
Biol Chem ; 401(2): 309-317, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31665103

ABSTRACT

Pseudorabies virus (PRV) UL2 (pUL2) is a multifunctional protein, which is homologous with herpes simplex virus 1 early protein UL2 (hUL2) and crucial for the viral propagation. Yet, how pUL2 executes its roles in the viral life cycle remain inadequately understood. In order to uncover its effect on the procedure of PRV infection, investigation was performed to examine the subcellular distribution of pUL2 and establish its trafficking mechanism. In the present study, enhanced yellow fluorescent protein or Myc tag fused pUL2 was transiently overexpressed in transfected cells and exhibited an absolutely nuclear accumulation without the existence of other PRV proteins. Additionally, the nuclear trafficking of pUL2 was proved to rely on Ran-, transportin-1, importin ß1, importin α1, α3 and α5. Accordingly, these data will benefit the knowledge of pUL2-mediated biological effects in PRV infection cycle.


Subject(s)
Cell Nucleus/metabolism , Uracil-DNA Glycosidase/metabolism , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Animals , COS Cells , Chlorocebus aethiops , Cloning, Molecular , Uracil-DNA Glycosidase/genetics , Viral Proteins/genetics
3.
Front Microbiol ; 12: 672192, 2021.
Article in English | MEDLINE | ID: mdl-34367081

ABSTRACT

Epstein-Barr virus (EBV), the pathogen of several human malignancies, encodes many proteins required to be transported into the nucleus for viral DNA reproduction and nucleocapsids assembly in the lytic replication cycle. Here, fluorescence microscope, mutation analysis, interspecies heterokaryon assays, co-immunoprecipitation assay, RNA interference, and Western blot were performed to explore the nuclear import mechanism of EBV encoded BLLF2 protein. BLLF2 was shown to be a nucleocytoplasmic shuttling protein neither by a chromosomal region maintenance 1 (CRM1)- nor by a transporter associated with antigen processing (TAP)-dependent pathway. Yet, BLLF2's two functional nuclear localization signals (NLSs), NLS1 (16KRQALETVPHPQNRGR31) and NLS2 (44RRPRPPVAKRRRFPR58), were identified, whereas the predicted NES was nonfunctional. Finally, BLLF2 was proven to transport into the nucleus via a Ran-dependent and importin ß1-dependent pathway. This mechanism may contribute to a more extensive insight into the assembly and synthesis of EBV virions in the nucleus, thus affording a new direction for the treatment of viruses.

4.
Aging (Albany NY) ; 12(3): 2921-2938, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32035424

ABSTRACT

Herpes simplex virus 1 (HSV-1) is a representative alphaherpesvirus that can provoke a series of severe diseases to human being, but its exact pathogenesis is not perfectly understood. UL2, a uracil-DNA glycosylase involved in the process of HSV-1 DNA replication, has been shown to be predominantly targeted to the nuclei in our previous study, yet little is established regarding the subcellular localization signal or its related function of UL2 during HSV-1 propagation. Here, by creating a number of UL2 variants merged with enhanced yellow fluorescent protein, an authentic nuclear localization signal (NLS) of UL2 was, for the first time, identified and profiled to amino acids (aa) 1 to 17 (MKRACSRSPSPRRRPSS), and 12RRR14 was indispensable for its nuclear accumulation. Besides, the predicted nuclear export signal (aa 225 to 240) of UL2 was determined to be nonfunctional. Based on the HSV-1 bacterial artificial chromosome and homologous recombination technique, three recombinant viruses with mutations of the identified NLS, deletion and revertant of UL2 were constructed to assess the effect of UL2 nuclear targeting on HSV-1 replication. Compared to the wild type HSV-1, UL2 deletion remarkably restrained viral production, and mutation of NLS targeting UL2 to cytoplasm (pan-cellular distribution) in recombinant virus-infected cells showed a certain degree of deficiency in HSV-1 proliferation. Moreover, recombinant virus with UL2 deletion exhibited serious damages of viral DNA synthesis and mRNA expression, and these processes were partially disrupted in the recombinant virus with UL2 NLS mutation. Collectively, we had established a functional NLS in UL2 and showed that the NLS-mediated nuclear translocation of UL2 was important for efficient production of HSV-1. These data were of significance for further clarifying the biological function of UL2 during HSV-1 infection.


Subject(s)
Gene Expression Regulation, Viral/physiology , Herpesvirus 1, Human/metabolism , Viral Proteins/metabolism , Virus Replication/physiology , Animals , COS Cells , Cell Nucleus , Chlorocebus aethiops , DNA, Recombinant/genetics , DNA, Viral/genetics , Gene Deletion , HEK293 Cells , Humans , Protein Transport , Vero Cells , Viral Plaque Assay , Viral Proteins/genetics , Virus Replication/genetics
5.
Aging (Albany NY) ; 12(7): 5751-5763, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32235005

ABSTRACT

As an indispensable structure protein, the herpes simplex virus 1 (HSV-1) UL6 has been described to exert numerous roles in viral proliferation. However, its exact subcellular localization and subcellular transport mechanism is not well known. In the present study, by utilizing confocal fluorescent microscopy, UL6 was shown to mainly locate in the nucleus in enhanced yellow fluorescent protein or Flag tag fused expression plasmid-transfected cells or HSV-1-infected cells, whereas its predicted nuclear localization signal was nonfunctional. In addition, by exploiting dominant negative mutant and inhibitor of different nuclear import receptors, as well as co-immunoprecipitation and RNA interference assays, UL6 was established to interact with importin α1, importin α7 and transportin-1 to mediate its nuclear translocation under the help of Ran-mediated GTP hydrolysis. Accordingly, these results will advance the knowledge of UL6-mediated biological significances in HSV-1 infection cycle.


Subject(s)
Active Transport, Cell Nucleus/physiology , Cell Nucleus/metabolism , Herpesvirus 1, Human/metabolism , Viral Proteins/metabolism , Animals , COS Cells , Chlorocebus aethiops , HEK293 Cells , Humans
6.
Front Immunol ; 11: 513383, 2020.
Article in English | MEDLINE | ID: mdl-33391252

ABSTRACT

Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis that is closely associated with several human malignant diseases, while type I interferon (IFN-I) plays an important role against EBV infection. As we all know, EBV can encode some proteins to inhibit the production of IFN-I, but it's not clear whether other proteins also take part in this progress. EBV early lytic protein BFRF1 is shown to be involved in viral maturation, however, whether BFRF1 participates in the host innate immune response is still not well known. In this study, we found BFRF1 could down-regulate sendai virus-induced IFN-ß promoter activity and mRNA expression of IFN-ß and ISG54 during BFRF1 plasmid transfection and EBV lytic infection, but BFRF1 could not affect the promoter activity of NF-κB or IRF7. Specifically, BFRF1 could co-localize and interact with IKKi. Although BFRF1 did not interfere the interaction between IKKi and IRF3, it could block the kinase activity of IKKi, which finally inhibited the phosphorylation, dimerization, and nuclear translocation of IRF3. Taken together, BFRF1 may play a critical role in disrupting the host innate immunity by suppressing IFN-ß activity during EBV lytic cycle.


Subject(s)
Herpesvirus 4, Human/immunology , Immune Evasion , Immunity, Innate , Interferon Regulatory Factor-3/immunology , Interferon-beta/immunology , Membrane Proteins/immunology , Viral Proteins/immunology , Animals , COS Cells , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans
7.
Front Immunol ; 11: 549, 2020.
Article in English | MEDLINE | ID: mdl-32477319

ABSTRACT

Herpes simplex virus 1 (HSV-1) is a large double-stranded DNA virus that encodes at least 80 viral proteins, many of which are involved in the virus-host interaction and are beneficial to the viral survival and reproduction. However, the biological functions of some HSV-1-encoded proteins are not fully understood. Nuclear factor κB (NF-κB) activation is the major antiviral innate response, which can be triggered by various signals induced by cellular receptors from different pathways. Here, we demonstrated that HSV-1 UL2 protein could antagonize the tumor necrosis factor α (TNF-α)-mediated NF-κB activation. Co-immunoprecipitation assays showed that UL2 could interact with the NF-κB subunits p65 and p50, which also revealed the region of amino acids 9 to 17 of UL2 could suppress the NF-κB activation and interact with p65 and p50, and UL2 bound to the immunoglobulin-like plexin transcription factor functional domain of p65. However, UL2 did not affect the formation of p65/p50 dimerization and their nuclear localizations. Yet, UL2 was demonstrated to inhibit the NF-κB activity by attenuating TNF-α-induced p65 phosphorylation at Ser536 and therefore decreasing the expression of downstream inflammatory chemokine interleukin 8. Taken together, the attenuation of NF-κB activation by UL2 may contribute to the escape of host's antiviral innate immunity for HSV-1 during its infection.


Subject(s)
Herpes Simplex/immunology , Host-Pathogen Interactions/immunology , Immune Evasion/immunology , NF-kappa B/immunology , Tumor Necrosis Factor-alpha/immunology , Uracil-DNA Glycosidase/immunology , Viral Proteins/immunology , HEK293 Cells , HeLa Cells , Herpesvirus 1, Human/immunology , Humans
8.
Front Immunol ; 10: 2810, 2019.
Article in English | MEDLINE | ID: mdl-31921110

ABSTRACT

Viperin is an interferon-inducible protein that responsible for a variety of antiviral responses to different viruses. Our previous study has shown that the ribonuclease UL41 of herpes simplex virus 1 (HSV-1) can degrade the mRNA of viperin to promote HSV-1 replication. However, it is not clear whether other HSV-1 encoded proteins can regulate the function of viperin. Here, one novel viperin associated protein, glycoprotein D (gD), was identified. To verify the interaction between gD and viperin, gD and viperin expression plasmids were firstly co-transfected into COS-7 cells, and fluorescence microscope showed they co-localized at the perinuclear region, then this potential interaction was confirmed by co-immunoprecipitation (Co-IP) assays. Moreover, confocal microscopy demonstrated that gD and viperin co-localized at the Golgi body and lipid droplets. Furthermore, dual-luciferase reporter and Co-IP assays showed gD and viperin interaction leaded to the increase of IRF7-mediated IFN-ß expression through promoting viperin and IRAK1 interaction and facilitating K63-linked IRAK1 polyubiquitination. Nevertheless, gD inhibited TRAF6-induced NF-κB activity by decreasing the interaction of viperin and TRAF6. In addition, gD restrained viperin-mediated interaction between IRAK1 and TRAF6. Eventually, gD and viperin interaction was corroborated to significantly inhibit the proliferation of HSV-1. Taken together, this study would open up new avenues toward delineating the function and physiological significance of gD and viperin during HSV-1 replication cycle.


Subject(s)
Herpesvirus 1, Human/metabolism , Proteins/metabolism , Viral Proteins/metabolism , Animals , COS Cells , Chlorocebus aethiops , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Interferon-beta/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Lipid Metabolism , NF-kappa B/metabolism , Oxidoreductases Acting on CH-CH Group Donors , TNF Receptor-Associated Factor 6/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL