Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Cell ; 179(4): 953-963.e11, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31675501

ABSTRACT

Chromatin domains and their associated structures must be faithfully inherited through cellular division to maintain cellular identity. However, accessing the localized strategies preserving chromatin domain inheritance, specifically the transfer of parental, pre-existing nucleosomes with their associated post-translational modifications (PTMs) during DNA replication, is challenging in living cells. We devised an inducible, proximity-dependent labeling system to irreversibly mark replication-dependent H3.1 and H3.2 histone-containing nucleosomes at desired loci in mouse embryonic stem cells so that their fate after DNA replication could be followed. Strikingly, repressed chromatin domains are preserved through local re-deposition of parental nucleosomes. In contrast, nucleosomes decorating active chromatin domains do not exhibit such preservation. Notably, altering cell fate leads to an adjustment of the positional inheritance of parental nucleosomes that reflects the corresponding changes in chromatin structure. These findings point to important mechanisms that contribute to parental nucleosome segregation to preserve cellular identity.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/genetics , Epigenesis, Genetic , Nucleosomes/genetics , Animals , Cell Differentiation/genetics , Cell Division/genetics , Cell Lineage/genetics , DNA Replication/genetics , Histones/genetics , Mice , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/metabolism , Protein Processing, Post-Translational/genetics
2.
Mol Cell ; 81(22): 4663-4676.e8, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34637754

ABSTRACT

The heterogeneous family of complexes comprising Polycomb repressive complex 1 (PRC1) is instrumental for establishing facultative heterochromatin that is repressive to transcription. However, two PRC1 species, ncPRC1.3 and ncPRC1.5, are known to comprise novel components, AUTS2, P300, and CK2, that convert this repressive function to that of transcription activation. Here, we report that individuals harboring mutations in the HX repeat domain of AUTS2 exhibit defects in AUTS2 and P300 interaction as well as a developmental disorder reflective of Rubinstein-Taybi syndrome, which is mainly associated with a heterozygous pathogenic variant in CREBBP/EP300. Moreover, the absence of AUTS2 or mutation in its HX repeat domain gives rise to misregulation of a subset of developmental genes and curtails motor neuron differentiation of mouse embryonic stem cells. The transcription factor nuclear respiratory factor 1 (NRF1) has a novel and integral role in this neurodevelopmental process, being required for ncPRC1.3 recruitment to chromatin.


Subject(s)
Brain/metabolism , CREB-Binding Protein/genetics , Cytoskeletal Proteins/metabolism , E1A-Associated p300 Protein/genetics , Embryonic Stem Cells/metabolism , Nuclear Respiratory Factor 1/metabolism , Transcription Factors/metabolism , Animals , Cell Differentiation , Chromatin/chemistry , Female , Genomics , HEK293 Cells , Heterozygote , Humans , Male , Mice , Neurons/metabolism , Protein Binding , Protein Domains , Proteomics , Transcriptional Activation
3.
Mol Cell ; 70(6): 1149-1162.e5, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29932905

ABSTRACT

Polycomb repressive complex 2 (PRC2) maintains gene silencing by catalyzing methylation of histone H3 at lysine 27 (H3K27me2/3) within chromatin. By designing a system whereby PRC2-mediated repressive domains were collapsed and then reconstructed in an inducible fashion in vivo, a two-step mechanism of H3K27me2/3 domain formation became evident. First, PRC2 is stably recruited by the actions of JARID2 and MTF2 to a limited number of spatially interacting "nucleation sites," creating H3K27me3-forming Polycomb foci within the nucleus. Second, PRC2 is allosterically activated via its binding to H3K27me3 and rapidly spreads H3K27me2/3 both in cis and in far-cis via long-range contacts. As PRC2 proceeds further from the nucleation sites, its stability on chromatin decreases such that domains of H3K27me3 remain proximal, and those of H3K27me2 distal, to the nucleation sites. This study demonstrates the principles of de novo establishment of PRC2-mediated repressive domains across the genome.


Subject(s)
Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/metabolism , Animals , Chromatin/metabolism , Gene Silencing , Histone Code , Histones/metabolism , Lysine/metabolism , Methylation , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells , Protein Binding , Protein Processing, Post-Translational
5.
Nucleic Acids Res ; 47(2): 700-715, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30476274

ABSTRACT

Mammalian-wide interspersed repeats (MIRs) are retrotransposed elements of mammalian genomes. Here, we report the specific binding of zinc finger protein ZNF768 to the sequence motif GCTGTGTG (N20) CCTCTCTG in the core region of MIRs. ZNF768 binding is preferentially associated with euchromatin and promoter regions of genes. Binding was observed for genes expressed in a cell type-specific manner in human B cell line Raji and osteosarcoma U2OS cells. Mass spectrometric analysis revealed binding of ZNF768 to Elongator components Elp1, Elp2 and Elp3 and other nuclear factors. The N-terminus of ZNF768 contains a heptad repeat array structurally related to the C-terminal domain (CTD) of RNA polymerase II. This array evolved in placental animals but not marsupials and monotreme species, displays species-specific length variations, and possibly fulfills CTD related functions in gene regulation. We propose that the evolution of MIRs and ZNF768 has extended the repertoire of gene regulatory mechanisms in mammals and that ZNF768 binding is associated with cell type-specific gene expression.


Subject(s)
Retroelements , Transcription Factors/metabolism , Transcription, Genetic , Binding Sites , Cell Line, Tumor , Cell Survival , DNA/chemistry , DNA/metabolism , Euchromatin/metabolism , Gene Expression Regulation , Humans , Nucleotide Motifs , Repetitive Sequences, Nucleic Acid , Transcription Factors/chemistry
6.
Nucleic Acids Res ; 45(17): 10229-10241, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28973446

ABSTRACT

Termination of transcription is important for establishing gene punctuation marks. It is also critical for suppressing many of the pervasive transcription events occurring throughout eukaryotic genomes and coupling their RNA products to efficient decay. In human cells, the ARS2 protein has been implicated in such function as its depletion causes transcriptional read-through of selected gene terminators and because it physically interacts with the ribonucleolytic nuclear RNA exosome. Here, we study the role of ARS2 on transcription and RNA metabolism genome wide. We show that ARS2 depletion negatively impacts levels of promoter-proximal RNA polymerase II at protein-coding (pc) genes. Moreover, our results reveal a general role of ARS2 in transcription termination-coupled RNA turnover at short transcription units like snRNA-, replication-dependent histone-, promoter upstream transcript- and enhancer RNA-loci. Depletion of the ARS2 interaction partner ZC3H18 mimics the ARS2 depletion, although to a milder extent, whereas depletion of the exosome core subunit RRP40 only impacts RNA abundance post-transcriptionally. Interestingly, ARS2 is also involved in transcription termination events within first introns of pc genes. Our work therefore establishes ARS2 as a general suppressor of pervasive transcription with the potential to regulate pc gene expression.


Subject(s)
Exosome Multienzyme Ribonuclease Complex/metabolism , Gene Expression Regulation/physiology , Nuclear Proteins/physiology , RNA Polymerase II/metabolism , Transcription Termination, Genetic , Chromatin Immunoprecipitation , Exosome Multienzyme Ribonuclease Complex/physiology , HeLa Cells , Humans , Introns , RNA Interference , RNA, Messenger/genetics , RNA, Small Interfering/genetics , RNA, Small Nuclear/genetics , RNA-Binding Proteins/physiology
7.
Bioinformatics ; 32(16): 2528-30, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27153642

ABSTRACT

UNLABELLED: We describe an R package designed for processing aligned reads from chromatin-oriented high-throughput sequencing experiments. Pasha (preprocessing of aligned sequences from HTS analyses) allows easy manipulation of aligned reads from short-read sequencing technologies (ChIP-seq, FAIRE-seq, MNase-Seq, …) and offers innovative approaches such as ChIP-seq reads elongation, nucleosome midpoint piling strategy for positioning analyses, or the ability to subset paired-end reads by groups of insert size that can contain biologically relevant information. AVAILABILITY AND IMPLEMENTATION: Pasha is a multi-platform R package, available on CRAN repositories under GPL-3 license (https://cran.r-project.org/web/packages/Pasha/). CONTACTS: rfenouil@gmail.com or jean-christophe.andrau@igmm.cnrs.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Chromatin , High-Throughput Nucleotide Sequencing , Software , Nucleosomes
8.
EMBO J ; 31(12): 2784-97, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22549466

ABSTRACT

Eukaryotic RNA polymerase II (Pol II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of the large subunit (Rpb1). Differential phosphorylation of Ser2, Ser5, and Ser7 in the 5' and 3' regions of genes coordinates the binding of transcription and RNA processing factors to the initiating and elongating polymerase complexes. Here, we report phosphorylation of Thr4 by Polo-like kinase 3 in mammalian cells. ChIPseq analyses indicate an increase of Thr4-P levels in the 3' region of genes occurring subsequently to an increase of Ser2-P levels. A Thr4/Ala mutant of Pol II displays a lethal phenotype. This mutant reveals a global defect in RNA elongation, while initiation is largely unaffected. Since Thr4 replacement mutants are viable in yeast we conclude that this amino acid has evolved an essential function(s) in the CTD of Pol II for gene transcription in mammalian cells.


Subject(s)
Gene Expression Regulation , Protein Serine-Threonine Kinases/metabolism , RNA Polymerase II/metabolism , Threonine/metabolism , Transcription, Genetic , Amino Acid Substitution , Animals , Cell Line , Chromatin Immunoprecipitation , Gene Expression Profiling , Genes, Essential , Humans , Mutagenesis, Site-Directed , Phosphorylation , RNA Polymerase II/genetics , Tumor Suppressor Proteins
9.
Genome Res ; 22(12): 2399-408, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23100115

ABSTRACT

One clear hallmark of mammalian promoters is the presence of CpG islands (CGIs) at more than two-thirds of genes, whereas TATA boxes are only present at a minority of promoters. Using genome-wide approaches, we show that GC content and CGIs are major promoter elements in mammalian cells, able to govern open chromatin conformation and support paused transcription. First, we define three classes of promoters with distinct transcriptional directionality and pausing properties that correlate with their GC content. We further analyze the direct influence of GC content on nucleosome positioning and depletion and show that CpG content and CGI width correlate with nucleosome depletion both in vivo and in vitro. We also show that transcription is not essential for nucleosome exclusion but influences both a weak +1 and a well-positioned nucleosome at CGI borders. Altogether our data support the idea that CGIs have become an essential feature of promoter structure defining novel regulatory properties in mammals.


Subject(s)
Base Composition/genetics , CpG Islands/genetics , Gene Deletion , Nucleosomes/genetics , TATA Box/genetics , Animals , Cells, Cultured , Chromatin Assembly and Disassembly , Genetic Association Studies/methods , Mammals/genetics , Mice , Nucleosomes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Initiation Site
10.
Science ; 377(6610): 1092-1099, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36048960

ABSTRACT

In most organisms, reproduction is correlated with shorter life span. However, the reproductive queen in eusocial insects exhibits a much longer life span than that of workers. In Harpegnathos ants, when the queen dies, workers can undergo an adult caste switch to reproductive pseudo-queens (gamergates), exhibiting a five-times prolonged life span. To explore the relation between reproduction and longevity, we compared gene expression during caste switching. Insulin expression is increased in the gamergate brain that correlates with increased lipid synthesis and production of vitellogenin in the fat body, both transported to the egg. This results from activation of the mitogen-activated protein kinase (MAPK) branch of the insulin signaling pathway. By contrast, the production in the gamergate developing ovary of anti-insulin Imp-L2 leads to decreased signaling of the AKT/forkhead box O (FOXO) branch in the fat body, which is consistent with their extended longevity.


Subject(s)
Ants , Insulin , Longevity , Reproduction , Animals , Ants/metabolism , Female , Insulin/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Ovary/growth & development , Signal Transduction , Vitellogenins/biosynthesis
11.
Sci Rep ; 12(1): 16974, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36217016

ABSTRACT

Progress in the generation of Hematopoietic Stem and Progenitor Cells (HSPCs) in vitro and ex vivo has been built on the knowledge of developmental hematopoiesis, underscoring the importance of understanding this process. HSPCs emerge within the embryonic vasculature through an Endothelial-to-Hematopoietic Transition (EHT). The transcriptional regulator Tal1 exerts essential functions in the earliest stages of blood development, but is considered dispensable for the EHT. Nevertheless, Tal1 is expressed with its binding partner Lmo2 and it homologous Lyl1 in endothelial and transitioning cells at the time of EHT. Here, we investigated the function of these genes using a mouse embryonic-stem cell (mESC)-based differentiation system to model hematopoietic development. We showed for the first time that the expression of TAL1 in endothelial cells is crucial to ensure the efficiency of the EHT process and a sustained hematopoietic output. Our findings uncover an important function of Tal1 during the EHT, thus filling the current gap in the knowledge of the role of this master gene throughout the whole process of hematopoietic development.


Subject(s)
Endothelial Cells , Hematopoiesis , Animals , Cell Differentiation/genetics , Endothelial Cells/metabolism , Endothelium , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Mice , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism
12.
Sci Adv ; 7(29)2021 Jul.
Article in English | MEDLINE | ID: mdl-34261657

ABSTRACT

Histone H3K27M is a driving mutation in diffuse intrinsic pontine glioma (DIPG), a deadly pediatric brain tumor. H3K27M reshapes the epigenome through a global inhibition of PRC2 catalytic activity and displacement of H3K27me2/3, promoting oncogenesis of DIPG. As a consequence, a histone modification H3K36me2, antagonistic to H3K27me2/3, is aberrantly elevated. Here, we investigate the role of H3K36me2 in H3K27M-DIPG by tackling its upstream catalyzing enzymes (writers) and downstream binding factors (readers). We determine that NSD1 and NSD2 are the key writers for H3K36me2. Loss of NSD1/2 in H3K27M-DIPG impedes cellular proliferation and tumorigenesis by disrupting tumor-promoting transcriptional programs. Further, we demonstrate that LEDGF and HDGF2 are the main readers mediating the protumorigenic effects downstream of NSD1/2-H3K36me2. Treatment with a chemically modified peptide mimicking endogenous H3K36me2 dislodges LEDGF/HDGF2 from chromatin and specifically inhibits the proliferation of H3K27M-DIPG. Our results indicate a functional pathway of NSD1/2-H3K36me2-LEDGF/HDGF2 as an acquired dependency in H3K27M-DIPG.

13.
Sci Adv ; 5(10): eaay3068, 2019 10.
Article in English | MEDLINE | ID: mdl-31616795

ABSTRACT

FACT (facilitates chromatin transcription) is a protein complex that allows RNA polymerase II (RNAPII) to overcome the nucleosome-induced barrier to transcription. While abundant in undifferentiated cells and many cancers, FACT is not abundant or is absent in most tissues. Therefore, we screened for additional proteins that might replace FACT upon differentiation. We identified two proteins, lens epithelium-derived growth factor (LEDGF) and hepatoma-derived growth factor 2 (HDGF2), each containing two high mobility group A (HMGA)-like AT-hooks and a methyl-lysine reading Pro-Trp-Trp-Pro (PWWP) domain that binds to H3K36me2 and H3K36me3.LEDGF and HDGF2 colocalize with H3K36me2/3 at genomic regions containing active genes. In myoblasts, LEDGF and HDGF2 are enriched on most active genes. Upon differentiation to myotubes, LEDGF levels decrease, while HDGF2 levels are maintained. Moreover, HDGF2 is required for their proper expression. HDGF2 knockout myoblasts exhibit an accumulation of paused RNAPII within the transcribed region of many HDGF2 target genes, indicating a defect in early elongation.


Subject(s)
Cell Differentiation/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Nucleosomes/metabolism , Transcription, Genetic , Animals , Gene Expression Regulation , HeLa Cells , Humans , Mice , Protein Binding , Stem Cells/metabolism
14.
Sci Adv ; 4(10): eaau5935, 2018 10.
Article in English | MEDLINE | ID: mdl-30402543

ABSTRACT

A methionine substitution at lysine-27 on histone H3 variants (H3K27M) characterizes ~80% of diffuse intrinsic pontine gliomas (DIPG) and inhibits polycomb repressive complex 2 (PRC2) in a dominant-negative fashion. Yet, the mechanisms for this inhibition and abnormal epigenomic landscape have not been resolved. Using quantitative proteomics, we discovered that robust PRC2 inhibition requires levels of H3K27M greatly exceeding those of PRC2, seen in DIPG. While PRC2 inhibition requires interaction with H3K27M, we found that this interaction on chromatin is transient, with PRC2 largely being released from H3K27M. Unexpectedly, inhibition persisted even after PRC2 dissociated from H3K27M-containing chromatin, suggesting a lasting impact on PRC2. Furthermore, allosterically activated PRC2 is particularly sensitive to H3K27M, leading to the failure to spread H3K27me from PRC2 recruitment sites and consequently abrogating PRC2's ability to establish H3K27me2-3 repressive chromatin domains. In turn, levels of polycomb antagonists such as H3K36me2 are elevated, suggesting a more global, downstream effect on the epigenome. Together, these findings reveal the conditions required for H3K27M-mediated PRC2 inhibition and reconcile seemingly paradoxical effects of H3K27M on PRC2 recruitment and activity.


Subject(s)
Brain Stem Neoplasms/pathology , Chromatin/chemistry , Glioma/pathology , Histones/metabolism , Lysine/metabolism , Polycomb Repressive Complex 2/antagonists & inhibitors , Animals , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/metabolism , Cells, Cultured , Child , Chromatin/genetics , Chromatin/metabolism , Disease Models, Animal , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/pathology , Glioma/genetics , Glioma/metabolism , Humans , Mice , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism
15.
Transcription ; 6(5): 91-101, 2015.
Article in English | MEDLINE | ID: mdl-26566685

ABSTRACT

Dynamic modification of heptad-repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 of RNA polymerase II (RNAPII) C-terminal domain (CTD) regulates transcription-coupled processes. Mass spectrometry analysis revealed that K7-residues in non-consensus repeats of human RNAPII are modified by acetylation, or mono-, di-, and tri-methylation. K7ac, K7me2, and K7me3 were found exclusively associated with phosphorylated CTD peptides, while K7me1 occurred also in non-phosphorylated CTD. The monoclonal antibody 1F5 recognizes K7me1/2 residues in CTD and reacts with RNAPIIA. Treatment of cellular extracts with phosphatase or of cells with the kinase inhibitor flavopiridol unmasked the K7me1/2 epitope in RNAPII0, consistent with the association of K7me1/2 marks with phosphorylated CTD peptides. Genome-wide profiling revealed high levels of K7me1/2 marks at the transcriptional start site of genes for sense and antisense transcribing RNAPII. The new K7 modifications further expand the mammalian CTD code to allow regulation of differential gene expression.


Subject(s)
Lysine/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Acetylation , Antibodies, Monoclonal/metabolism , Cell Line , Gene Expression Regulation , Humans , Mass Spectrometry , Methylation , Models, Molecular , Protein Structure, Tertiary , RNA Polymerase II/genetics , Transcription Initiation, Genetic
16.
Elife ; 3: e02105, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24842994

ABSTRACT

In mammals, the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II consists of 52 conserved heptapeptide repeats containing the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Post-translational modifications of the CTD coordinate the transcription cycle and various steps of mRNA maturation. Here we describe Tyr1 phosphorylation (Tyr1P) as a hallmark of promoter (5' associated) Pol II in mammalian cells, in contrast to what was described in yeast. Tyr1P is predominantly found in antisense orientation at promoters but is also specifically enriched at active enhancers. Mutation of Tyr1 to phenylalanine (Y1F) prevents the formation of the hyper-phosphorylated Pol IIO form, induces degradation of Pol II to the truncated Pol IIB form, and results in a lethal phenotype. Our results suggest that Tyr1P has evolved specialized and essential functions in higher eukaryotes associated with antisense promoter and enhancer transcription, and Pol II stability.DOI: http://dx.doi.org/10.7554/eLife.02105.001.


Subject(s)
Antisense Elements (Genetics) , Enhancer Elements, Genetic , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Tyrosine/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Humans , Mutation , Phosphorylation , RNA Polymerase II/chemistry , RNA Polymerase II/genetics
17.
Nat Struct Mol Biol ; 19(10): 998-1004, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22961379

ABSTRACT

Argonaute proteins play a major part in transcriptional gene silencing in many organisms, but their role in the nucleus of somatic mammalian cells remains elusive. Here, we have immunopurified human Argonaute-1 and Argonaute-2 (AGO1 and AGO2) chromatin-embedded proteins and found them associated with chromatin modifiers and, notably, with splicing factors. Using the CD44 gene as a model, we show that AGO1 and AGO2 facilitate spliceosome recruitment and modulate RNA polymerase II elongation rate, thereby affecting alternative splicing. Proper AGO1 and AGO2 recruitment to CD44 transcribed regions required the endonuclease Dicer and the chromobox protein HP1γ, and resulted in increased histone H3 lysine 9 methylation on variant exons. Our data thus uncover a new model for the regulation of alternative splicing, in which Argonaute proteins couple RNA polymerase II elongation to chromatin modification.


Subject(s)
Alternative Splicing , Argonaute Proteins/metabolism , Chromatin/metabolism , Eukaryotic Initiation Factors/metabolism , Animals , Argonaute Proteins/genetics , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Eukaryotic Initiation Factors/genetics , Fibroblasts/physiology , HeLa Cells , Histones/metabolism , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Lysine/metabolism , Methylation , Mice , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Small Interfering , Ribonuclease III/genetics , Ribonuclease III/metabolism , Spliceosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL