Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Shock ; 22(4): 326-32, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15377887

ABSTRACT

Myocardial dysfunction is a common manifestation of thermal injury, the etiology of which appears to be multifactorial. We have previously demonstrated that burn injury impairs cardiac protein synthesis at the level of translation initiation. The purpose of the present study was to determine whether oral administration of leucine, which is known to stimulate translation initiation in skeletal muscle, can ameliorate burn-induced changes in signal transduction pathways known to regulate protein synthesis in cardiac muscle. To address this aim, thermal injury was produced by a 40% total body surface area full-thickness scald burn in anesthetized rats, and the animals were studied in the fasted condition 24 h later; appropriate time-matched nonburned control rats were also included. Separate groups of control and burn rats also received an oral gavage of leucine. To identify potential mechanisms responsible for regulating mRNA translation in cardiac muscle, several eukaryotic initiation factors (eIFs) were examined using immunoprecipitation and immunoblotting techniques. Hearts from burned rats demonstrated a redistribution of eIF4E as evidenced by the increased binding of the translational repressor 4E-BP1 with eIF4E, a decreased amount of eIF4E bound with eIF4G, and a decreased amount of the hyperphosphorylated gamma-isoform of 4E-BP1. Furthermore, constitutive phosphorylation of mTOR, the ribosomal protein S6, and eIF4G was also decreased in hearts from burned rats. In control rats, leucine failed to alter eIF4E distribution but did increase the phosphorylation of S6K1 and S6. However, in hearts from burn rats, leucine acutely reversed the alterations in eIF4E distribution as well as the changes in S6, eIF4G, and mTOR phosphorylation. These data suggest that oral administration of leucine can acutely reverse multiple defects in cardiac translation initiation produced by thermal injury.


Subject(s)
Burns/metabolism , Leucine/pharmacology , Myocardium/metabolism , Protein Biosynthesis/drug effects , Administration, Oral , Animals , Carrier Proteins/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4G/metabolism , Insulin/blood , Insulin-Like Growth Factor I/analysis , Intracellular Signaling Peptides and Proteins , Leucine/blood , Male , Phosphoproteins/metabolism , Phosphorylation , Protein Kinases/metabolism , Rats , Rats, Sprague-Dawley , Ribosomal Protein S6 Kinases/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , TOR Serine-Threonine Kinases
2.
Shock ; 19(6): 538-46, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12785009

ABSTRACT

The presence of increased levels of proinflammatory cytokines in the blood is associated with decreased muscle protein synthesis and the erosion of lean body mass in many catabolic conditions. However, little is known regarding the role of endogenous cytokine synthesis in muscle per se. The purpose of the present study was to characterize the cytokine expression profile of skeletal muscle in response to an in vivo injection of endotoxin (lipopolysaccharide, LPS). Intraperitoneal injection of a nonlethal dose of LPS (1,000 microg/kg Escherichia coli) into male rats increased the mRNA content of tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1beta in gastrocnemius muscle as early as 1 h; IL-6 mRNA was not increased until 2 h post-LPS. Expression of TNF-alpha and IL-1beta peaked at 2 h (10- and 80-fold, respectively), whereas the increased IL-6 mRNA content (150-fold) peaked later at 4 h. The abundance of all measured cytokine mRNAs in skeletal muscle declined thereafter. The LPS-induced increase in muscle mRNA content for TNF-alpha, IL-6, and IL-1beta was dose-dependent with elevations being seen with as little as 10 microg/kg of LPS (2.5-, 8-, and 9-fold, respectively). In general, pretreatment of rats with dexamethasone attenuated but did not completely prevent the LPS-induced increase in muscle cytokine mRNA. LPS increased muscle TNF-alpha protein content approximately 2-fold and this increase was prevented by pretreatment with dexamethasone. LPS-induced increases in muscle IL-1beta and IL-6 protein were not detected. LPS also produced a 2-fold increase in the mRNA content of the high-mobility-group protein-1, a late-phase cytokine, in muscle at 12-24 h. Finally, although skeletal muscle was found to contain both the toll-like receptor (TLR)-2 and TLR4, LPS did not alter the mRNA content of TLR4 and produced a small (50%) but significant increase in TLR2 mRNA. These changes in TLRs were less dramatic than those observed for liver, spleen or cardiac muscle. Collectively these data indicate that skeletal muscle possesses many of the components of the innate immune system, including increases in both early- and late-phase cytokines and the presence of toll-like receptors.


Subject(s)
Cytokines/genetics , Endotoxins/toxicity , Escherichia coli Infections/physiopathology , Gene Expression Regulation/physiology , HMGB1 Protein/genetics , Interleukin-1/genetics , Interleukin-6/genetics , Lipopolysaccharides/toxicity , Muscle, Skeletal/physiopathology , Animals , Base Sequence , DNA Primers , Disease Progression , Escherichia coli Infections/genetics , Escherichia coli Infections/immunology , Gene Expression Regulation/immunology , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/immunology , Organ Specificity , RNA, Messenger/drug effects , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/genetics
3.
Alcohol Clin Exp Res ; 28(11): 1758-67, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15547464

ABSTRACT

BACKGROUND: The purpose of this study was to characterize the ability of alcohol to suppress insulin-like growth factor (IGF)-I stimulation of ribosomal S6 kinase 1 (S6K1) and 4E-BP1 phosphorylation, which are central elements in the signal transduction pathway used to coordinate the protein synthetic response and may contribute to the development of alcoholic myopathy. METHODS: In vivo studies examined the dose and time dependency of the ability of alcohol to impair signal transduction under basal and IGF-I-stimulated conditions. Additional studies examined the effect of gender, nutritional state, and route of alcohol administration. A separate study determined the direct effects of alcohol on muscle metabolism by using the isolated perfused hindlimb preparation. RESULTS: The phosphorylation of S6K1 and S6 in muscle was increased after injection of IGF-I in control rats. In contrast, IGF-I failed to stimulate S6K1 or S6 phosphorylation 2.5 hr after intraperitoneal administration of alcohol when the blood alcohol concentration was increased between approximately 165 and 300 mg/dl. With a maximal suppressive dose of alcohol, the inhibitory effect on S6K1/S6 phosphorylation was observed as early as 1 hr and for up to 8 hr. The ability of alcohol to impair phosphorylation of S6K1 and S6 was independent of gender (male versus female), nutritional status (fed versus fasted), and route of alcohol administration (intraperitoneal versus oral). Furthermore, the suppressive effect of alcohol was still observed in rats pretreated with 4-methylpyrazole, suggesting that the response was independent of the oxidative metabolism of ethanol. The direct effect of alcohol on IGF-stimulated S6K1/S6 phosphorylation was also present when the isolated hindlimb was perfused in situ with buffer containing alcohol. In contrast to S6K1, acute alcohol intoxication did not consistently impair the ability of IGF-I to stimulate 4E-BP1 phosphorylation under any of the experimental conditions. CONCLUSIONS: These data indicate that acute alcohol intoxication selectively impairs IGF-I signaling via S6K1, but not 4E-BP1, and that this defect is independent of gender, nutritional state, route of administration, and alcohol metabolism. The IGF-I resistance may represent a participating mechanism by which alcohol directly limits the translation of selected messenger RNAs and, ultimately, protein synthesis in skeletal muscle.


Subject(s)
Alcoholic Intoxication/enzymology , Ethanol/pharmacology , Muscle, Skeletal/enzymology , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases/metabolism , Alcoholic Intoxication/metabolism , Animals , Male , Muscle, Skeletal/metabolism , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley
4.
Alcohol Clin Exp Res ; 26(10): 1574-83, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12394292

ABSTRACT

BACKGROUND: Alcohol (EtOH) alters the plasma and tissue content of insulin-like growth factor (IGF)-I, an important anabolic hormone. However, the bioavailability and bioactivity of IGF-I can also be modulated by changes in soluble proteins that bind IGF-I (IGFBPs). The purpose of the present study was to determine whether EtOH intoxication in rats alters the plasma concentration and tissue mRNA content of various IGFBPs. Based on initial results subsequent studies were performed to assess potential mechanisms by which EtOH increased IGFBP-1. METHODS: Rats were administered EtOH (75 mmol/kg) and blood and tissues collected at various times thereafter. Separate groups of rats were also pretreated with 4-methylpyrazole (4-MP; alcohol dehydrogenase inhibitor), cyanamide (inhibitor of acetaldehyde metabolism), RU486 (glucocorticoid receptor antagonist) or the tumor necrosis factor (TNF) antagonist (TNF(BP)) prior to EtOH administration. RESULTS: Acute EtOH intoxication did not alter the mRNA content of IGFBP-3, -4 or -5 in liver or kidney. However, EtOH increased IGFBP-1 in blood (5-fold), which was associated with an up-regulation of IGFBP-1 mRNA content in liver and kidney (2- to 3-fold). Likewise, the injection of the nonmetabolizable alcohol -butanol also increased IGFBP-1 in plasma, liver, and kidney. The increased IGFBP-1 in blood and tissues was not prevented by inhibiting alcohol metabolism with 4-MP. However, pretreatment with cyanamide markedly accentuated the EtOH-induced increase in IGFBP-1 in blood (20-fold), liver (3.5-fold), and kidney (12-fold), indicating that accumulation of acetaldehyde can enhance IGFBP-1 synthesis. A time course study indicated that EtOH increased plasma IGFBP-1 levels as early as 0.5-1 hr, and that this response was associated with elevated IGFBP-1 mRNA in liver but not kidney. Pretreatment with RU486 did not prevent or attenuate the EtOH-induced increase in IGFBP-1. However, the alcohol-induced increase in IGFBP-1 was attenuated by TNF(BP). CONCLUSIONS: These data suggest that the acute alcohol-induced increase in IGFBP-1 is mediated, at least in part, by TNF and is independent of EtOH metabolism and increases in endogenous glucocorticoids.


Subject(s)
Alcoholic Intoxication/metabolism , Ethanol/pharmacology , Insulin-Like Growth Factor Binding Protein 1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Insulin-Like Growth Factor Binding Protein 1/blood , Male , RNA, Messenger/blood , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
5.
Am J Physiol Endocrinol Metab ; 285(6): E1205-15, 2003 Dec.
Article in English | MEDLINE | ID: mdl-12944322

ABSTRACT

Acute alcohol (EtOH) intoxication impairs skeletal muscle protein synthesis. Although this impairment is not associated with a decrease in the total plasma amino acid concentration, EtOH may blunt the anabolic response to amino acids. To examine this hypothesis, rats were administered EtOH or saline (Sal) and 2.5 h thereafter were orally administered either leucine (Leu) or Sal. The gastrocnemius was removed 20 min later to assess protein synthesis and signaling components important in translational control of protein synthesis. Oral Leu increased muscle protein synthesis by the same magnitude in Sal- and EtOH-treated rats. However, the increase in the latter group was insufficient to overcome the suppressive effect of EtOH, and the rate of synthesis remained lower than that observed in rats from the Sal-Sal group. Leu markedly increased phosphorylation of Thr residues 36, 47, and 70 on 4E-binding protein (BP)1 in muscle from rats not receiving EtOH, and this response was associated with a redistribution of eukaryotic initiation factor (eIF) 4E from the inactive eIF4E. 4E-BP1 to the active eIF4E. eIF4G complex. In EtOH-treated rats, the Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E availability were partially abrogated. EtOH also prevented the Leu-induced increase in phosphorylation of eIF4G, the serine/threonine protein kinase S6K1, and the ribosomal protein S6. Moreover, EtOH attenuated the Leu-induced phosphorylation of the mammalian target of rapamycin (mTOR). The ability of EtOH to blunt the anabolic effects of Leu could not be attributed to differences in the plasma concentrations of insulin, insulin-like growth factor I, or Leu. Finally, although EtOH increased the plasma corticosterone concentration, inhibition of glucocorticoid action by RU-486 was unable to prevent EtOH-induced defects in the ability of Leu to stimulate 4E-BP1, S6K1, and mTOR phosphorylation. Hence, ethanol produces a leucine resistance in skeletal muscle, as evidenced by the impaired phosphorylation of 4E-BP1, eIF4G, S6K1, and mTOR, that is independent of elevations in endogenous glucocorticoids.


Subject(s)
Carrier Proteins/metabolism , Ethanol/administration & dosage , Eukaryotic Initiation Factor-4G/metabolism , Leucine/administration & dosage , Muscle, Skeletal/metabolism , Phosphoproteins/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Administration, Oral , Alcoholic Intoxication/metabolism , Animals , Ankle/physiology , Drug Resistance , Injections, Intraperitoneal , Intracellular Signaling Peptides and Proteins , Male , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Reference Values , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL