Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters

Affiliation country
Publication year range
1.
J Fluoresc ; 34(1): 397-409, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37278962

ABSTRACT

In the present system, Sm3+ activated Ba2BiV3O11 nanomaterial series radiating orange-red light was developed via an efficient approach of solution combustion method. The structural examinations using XRD analysis indicate that the sample is crystallized into the monoclinic phase with the P21/a (14) space group. The elemental composition and morphological conduct were studied via energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) respectively. Also, the formation of nanoparticles was confirmed by transmission electron microscopy (TEM). Photoluminescent (PL) examinations reveal the orange-red emission from the developed nanocrystals via documenting the emission spectra, which reveals the peak at 606 nm due to the 4G5/2 → 6H7/2 transition. Further, the decay time, non-radiative rates, quantum efficiency, and band gap of the optimal sample were computed as 1.3263 ms, 219.5 s- 1, 70.88%, and 3.41 eV respectively. Finally, the chromatic parameters including color - coordinates (0.5565, 0.4426), 1975 K color correlated temperature (CCT), and color purity (85.58%) reflected their excellent luminous performance. The above-mentioned outcomes endorsed the relevancy of the developed nanomaterials as a propitious agent in the engineering of advanced illuminating optoelectronic appliances.

2.
J Fluoresc ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126609

ABSTRACT

An efficient urea-assisted SC (solution-combustion) approach was used to synthesize a novel series of doped Ca0.5Bi3P2O10: xDy3+ nanophosphors (0.01-0.1 mol). The powdered materials were thoroughly investigated using structural and optical measures. 'Rietveld refinement' investigations found that the produced nanophosphor formed a triclinic system with the P -1 triclinic space group. An EDS (energy-dispersive spectral) study was conducted to determine the corresponding proportions of constituent elements of doped nanophosphors. The TEM (transmission electron microscopy) revealed aggregated particles with a standard size on the nanoscale. The PLE (Photoluminescence excitation) spectrum indicates that the indicated phosphors can be stimulated by NUV (near ultraviolet) illumination sources. The Dy3+-ions undergo transitions from (4F9/2 → 6H15/2 & 4F9/2 → 6H13/2) were recognized as (PL) spectra with an excitation of 353 nm revealed the presence of blue-yellow bands at 481, and 577 nm, correspondingly. Further, PL data was used to determine photometric metrics such as CCT (correlated color-temperature), CC (chromaticity-coordinates (x & y)), and CP (color-purity (%)), supporting their use in solid-state lighting and latent fingerprinting applications.

3.
J Fluoresc ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37523137

ABSTRACT

Ca9Y(VO4)7 phosphor activated with Er3+ ions have been developed by the urea-aided solution combustion technique. XRD profiles assisted with Rietveld refinement executed over-developed Er3+-activated Ca9Y(VO4)7 powder, revealed a trigonal phase with the R3c space group. The electron microscope techniques namely TEM and SEM characterize the size and surface-linked qualities of the developed nanopowder, respectively. The uniform distribution of various elements in the nanocrystalline sample is authenticated by an energy-dispersive spectroscopy (EDS) system. The Eg (band gap) value of 3.64 eV for Ca9Y0.9Er0.1(VO4)7 and 3.74 eV for Ca9Y(VO4)7 has been estimated. Upon 382 nm excitation, Er3+: Ca9Y(VO4)7 phosphor gives rise to the bright green emission owing to the 4S3/2 → 4I15/2 transition. The concentration quenching after 10 mol% composition of trivalent erbium ions is attributed to dipole-dipole interlinkages in accordance with Dexter's theory. The radiative lifetime (1.1083 ms), non-radiative rates (0.2079 ms- 1), quantum efficiency (79%), along with colorimetric parameters i.e. CIE x (= 0.2577), y (= 0.4566), and CCT quantities offer Ca9Y0.9Er0.1(VO4)7 as a proficient green radiating nanomaterial for RGB phosphors in solid-state applications.

4.
J Fluoresc ; 33(2): 497-508, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36449228

ABSTRACT

A series of Ca9Gd(VO4)7: Dy3+ (x = 0.01-0.20) nanophosphor crystals emitting a cool white light were synthesized by solution combustion methodology. The X-ray diffraction patterns were analyzed and processed using Rietveld refinement. The fabricated nanophosphor was found to crystallize in a trigonal crystal lattice with space group R3c(161). The morphological behavior of the prepared nanophosphor was investigated using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The photoluminescence properties of the nanophosphor correspond to cool white emission upon near-ultraviolet (NUV) excitation at 327 nm due to 4F9/2 → 6H15/2 (bluish) and 4F9/2 → 6H13/2 (yellowish) radiative relaxations at 487 nm and 576 nm respectively. Also, there is a strong occurrence of double charge transfer from O2- ions to Dy3+ and V5+ ions with the latter being stronger due to the high positive charge of V5+ ions. Color coordinates (x = 0.2878, y = 0.3259) are consistent with white emission. Auzel's model was implemented to examine the non-radiative relaxation (113.5 ms-1), radiative lifetime (1.4856 ms), and quantum efficiency (83.13%) values. The crystalline and optical behavior of the synthesized cool white emitting nanophosphor facilitates its use in near-UV-based WLEDs and other advanced solid-state lighting.


Subject(s)
Luminescent Agents , Vanadates , Light , X-Ray Diffraction , Luminescent Agents/chemistry
5.
Plant Cell Rep ; 41(3): 699-739, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34223931

ABSTRACT

Global climate change will significantly increase the intensity and frequency of hot, dry days. The simultaneous occurrence of drought and heat stress is also likely to increase, influencing various agronomic characteristics, such as biomass and other growth traits, phenology, and yield-contributing traits, of various crops. At the same time, vital physiological traits will be seriously disrupted, including leaf water content, canopy temperature depression, membrane stability, photosynthesis, and related attributes such as chlorophyll content, stomatal conductance, and chlorophyll fluorescence. Several metabolic processes contributing to general growth and development will be restricted, along with the production of reactive oxygen species (ROS) that negatively affect cellular homeostasis. Plants have adaptive defense strategies, such as ROS-scavenging mechanisms, osmolyte production, secondary metabolite modulation, and different phytohormones, which can help distinguish tolerant crop genotypes. Understanding plant responses to combined drought/heat stress at various organizational levels is vital for developing stress-resilient crops. Elucidating the genomic, proteomic, and metabolic responses of various crops, particularly tolerant genotypes, to identify tolerance mechanisms will markedly enhance the continuing efforts to introduce combined drought/heat stress tolerance. Besides agronomic management, genetic engineering and molecular breeding approaches have great potential in this direction.


Subject(s)
Droughts , Thermotolerance , Chlorophyll/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Proteomics , Reactive Oxygen Species , Stress, Physiological , Thermotolerance/genetics
6.
Sci Rep ; 13(1): 15450, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723187

ABSTRACT

Increasing temperature affects all food crops, thereby reducing their yield potential. Chickpea is a cool-season food legume vital for its nutritive value, but it is sensitive to high temperatures (> 32/20 °C maximum/minimum) during its reproductive and seed-filling stages. This study evaluated the effects of heat stress on yield and qualitative traits of chickpea seeds in a controlled environment. Chickpea genotypes differing in heat sensitivity [two heat-tolerant (HT) and two heat-sensitive (HS)] were raised in pots, initially in an outdoor environment (average 23.5/9.9 °C maximum/minimum), until the beginning of pod set (107-110 days after sowing). At this stage, the plants were moved to a controlled environment in the growth chamber to impose heat stress (32/20 °C) at the seed-filling stage, while maintaining a set of control plants at 25/15 °C. The leaves of heat-stressed plants of the HT and HS genotypes showed considerable membrane damage, altered stomatal conductance, and reduced leaf water content, chlorophyll content, chlorophyll fluorescence, and photosynthetic ability (RuBisCo, sucrose phosphate synthase, and sucrose activities) relative to their corresponding controls. Seed filling duration and seed rate drastically decreased in heat-stressed plants of the HT and HS genotypes, severely reducing seed weight plant-1 and single seed weight, especially in the HS genotypes. Yield-related traits, such as pod number, seed number, and harvest index, noticeably decreased in heat-stressed plants and more so in the HS genotypes. Seed components, such as starch, proteins, fats, minerals (Ca, P, and Fe), and storage proteins (albumin, globulins, glutelin, and prolamins), drastically declined, resulting in poor-quality seeds, particularly in the HS genotypes. These findings revealed that heat stress significantly reduced leaf sucrose production, affecting the accumulation of various seed constituents, and leading to poor nutritional quality. The HT genotypes were less affected than the HS genotypes because of the greater stability of their leaf water status and photosynthetic ability, contributing to better yield and seed quality traits in a heat-stressed environment.


Subject(s)
Cicer , Fabaceae , Cicer/genetics , Seeds/genetics , Genotype , Chlorophyll
7.
ACS Omega ; 8(50): 47758-47772, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144072

ABSTRACT

In order to find the most advantageous bioactive compounds from mulberry latex for drug development in the near future, this study was conducted to characterize and evaluate antioxidant and antimicrobial properties from four different mulberry lattices (BR-2, S-1, AR-14, and S-146). The characterization of the lattices was performed by scanning electron microscopy with energy-dispersive X-ray spectroscopy, gas chromatography coupled to mass spectroscopy, and Fourier transform infrared spectroscopy. Further, screenings of the antioxidant and antimicrobial potential of selected lattices were performed in vitro using 2,2-diphenyl-1-picrylhydrazyl assay and agar well diffusion methods, respectively. Interestingly, the outcome of the current study revealed that tested mulberry lattices contain a considerable amount of bioactive phytoconstituents, particularly antimicrobial and antioxidant compounds, as revealed by chromatographic analysis. BR-2 latex was found to have significant antioxidant activity (75%) followed by S-146 (64.6%) and AR-14 (52.9%). The maximum antimicrobial activity was found in BR-2 latex compared to other tested latex varieties. The results of this investigation showed that mulberry latex from the BR-2 type may successfully control both bacterial and fungal infections, with the added benefit of having enhanced antioxidant capabilities.

8.
Front Plant Sci ; 13: 878498, 2022.
Article in English | MEDLINE | ID: mdl-35837452

ABSTRACT

Vegetables are a distinct collection of plant-based foods that vary in nutritional diversity and form an important part of the healthy diet of the human being. Besides providing basic nutrition, they have great potential for boosting human health. The balanced consumption of vegetables is highly recommended for supplementing the human body with better nutrition density, dietary fiber, minerals, vitamins, and bioactive compounds. However, the production and quality of fresh vegetables are influenced directly or indirectly by exposure to high temperatures or heat stress (HS). A decline in quality traits and harvestable yield are the most common effects of HS among vegetable crops. Heat-induced morphological damage, such as poor vegetative growth, leaf tip burning, and rib discoloration in leafy vegetables and sunburn, decreased fruit size, fruit/pod abortion, and unfilled fruit/pods in beans, are common, often rendering vegetable cultivation unprofitable. Further studies to trace down the possible physiological and biochemical effects associated with crop failure reveal that the key factors include membrane damage, photosynthetic inhibition, oxidative stress, and damage to reproductive tissues, which may be the key factors governing heat-induced crop failure. The reproductive stage of plants has extensively been studied for HS-induced abnormalities. Plant reproduction is more sensitive to HS than the vegetative stages, and affects various reproductive processes like pollen germination, pollen load, pollen tube growth, stigma receptivity, ovule fertility and, seed filling, resulting in poorer yields. Hence, sound and robust adaptation and mitigation strategies are needed to overcome the adverse impacts of HS at the morphological, physiological, and biochemical levels to ensure the productivity and quality of vegetable crops. Physiological traits such as the stay-green trait, canopy temperature depression, cell membrane thermostability, chlorophyll fluorescence, relative water content, increased reproductive fertility, fruit numbers, and fruit size are important for developing better yielding heat-tolerant varieties/cultivars. Moreover, various molecular approaches such as omics, molecular breeding, and transgenics, have been proved to be useful in enhancing/incorporating tolerance and can be potential tools for developing heat-tolerant varieties/cultivars. Further, these approaches will provide insights into the physiological and molecular mechanisms that govern thermotolerance and pave the way for engineering "designer" vegetable crops for better health and nutritional security. Besides these approaches, agronomic methods are also important for adaptation, escape and mitigation of HS protect and improve yields.

9.
Front Plant Sci ; 13: 880519, 2022.
Article in English | MEDLINE | ID: mdl-35720547

ABSTRACT

Under global climate change, high-temperature stress is becoming a major threat to crop yields, adversely affecting plant growth, and ultimately resulting in significant yield losses in various crops, including chickpea. Thus, identifying crop genotypes with increased heat stress (HS) tolerance is becoming a priority for chickpea research. Here, we assessed the response of seven physiological traits and four yield and yield-related traits in 39 chickpea genotypes grown in normal-sown and late-sown environments [to expose plants to HS (>32/20°C) at the reproductive stage] for two consecutive years (2017-2018 and 2018-2019). Significant genetic variability for the tested traits occurred under normal and HS conditions in both years. Based on the tested physiological parameters and yield-related traits, GNG2171, GNG1969, GNG1488, PantG186, CSJ515, RSG888, RSG945, RVG202, and GNG469 were identified as promising genotypes under HS. Further, ten heat-tolerant and ten heat-sensitive lines from the set of 39 genotypes were validated for their heat tolerance (32/20°C from flowering to maturity) in a controlled environment of a growth chamber. Of the ten heat-tolerant genotypes, GNG1969, GNG1488, PantG186, RSG888, CSJ315, and GNG1499 exhibited high heat tolerance evidenced by small reductions in pollen viability, pollen germination, and pod set %, high seed yield plant-1 and less damage to membranes, photosynthetic ability, leaf water status, and oxidative processes. In growth chamber, chlorophyll, photosynthetic efficiency, pollen germination, and pollen viability correlated strongly with yield traits. Thus, GNG1969, GNG1488, PantG186, RSG888, CSJ315, and GNG1499 genotypes could be used as candidate donors for transferring heat tolerance traits to high-yielding heat-sensitive varieties to develop heat-resilient chickpea cultivars.

10.
Front Plant Sci ; 11: 587264, 2020.
Article in English | MEDLINE | ID: mdl-33193540

ABSTRACT

Rising global temperatures due to climate change are affecting crop performance in several regions of the world. High temperatures affect plants at various organizational levels, primarily accelerating phenology to limit biomass production and shortening reproductive phase to curtail flower and fruit numbers, thus resulting in severe yield losses. Besides, heat stress also disrupts normal growth, development, cellular metabolism, and gene expression, which alters shoot and root structures, branching patterns, leaf surface and orientation, and anatomical, structural, and functional aspects of leaves and flowers. The reproductive growth stage is crucial in plants' life cycle, and susceptible to high temperatures, as reproductive processes are negatively impacted thus reducing crop yield. Genetic variation exists among genotypes of various crops to resist impacts of heat stress. Several screening studies have successfully phenotyped large populations of various crops to distinguish heat-tolerant and heat-sensitive genotypes using various traits, related to shoots (including leaves), flowers, fruits (pods, spikes, spikelets), and seeds (or grains), which have led to direct release of heat-tolerant cultivars in some cases (such as chickpea). In the present review, we discuss examples of contrasting genotypes for heat tolerance in different crops, involving many traits related to thermotolerance in leaves (membrane thermostability, photosynthetic efficiency, chlorophyll content, chlorophyll fluorescence, stomatal activity), flowers (pollen viability, pollen germination, fertilization, ovule viability), roots (architecture), biomolecules (antioxidants, osmolytes, phytohormones, heat-shock proteins, other stress proteins), and "omics" (phenomics, transcriptomics, genomics) approaches. The traits linked to heat tolerance can be introgressed into high yielding but heat-sensitive genotypes of crops to enhance their thermotolerance. Involving these traits will be useful for screening contrasting genotypes and would pave the way for characterizing the underlying molecular mechanisms, which could be valuable for engineering plants with enhanced thermotolerance. Wherever possible, we discussed breeding and biotechnological approaches for using these traits to develop heat-tolerant genotypes of various food crops.

11.
Front Plant Sci ; 10: 1759, 2019.
Article in English | MEDLINE | ID: mdl-32161601

ABSTRACT

Chickpea is one of the most economically important food legumes, and a significant source of proteins. It is cultivated in more than 50 countries across Asia, Africa, Europe, Australia, North America, and South America. Chickpea production is limited by various abiotic stresses (cold, heat, drought, salt, etc.). Being a winter-season crop in northern south Asia and some parts of the Australia, chickpea faces low-temperature stress (0-15°C) during the reproductive stage that causes substantial loss of flowers, and thus pods, to inhibit its yield potential by 30-40%. The winter-sown chickpea in the Mediterranean, however, faces cold stress at vegetative stage. In late-sown environments, chickpea faces high-temperature stress during reproductive and pod filling stages, causing considerable yield losses. Both the low and the high temperatures reduce pollen viability, pollen germination on the stigma, and pollen tube growth resulting in poor pod set. Chickpea also experiences drought stress at various growth stages; terminal drought, along with heat stress at flowering and seed filling can reduce yields by 40-45%. In southern Australia and northern regions of south Asia, lack of chilling tolerance in cultivars delays flowering and pod set, and the crop is usually exposed to terminal drought. The incidences of temperature extremes (cold and heat) as well as inconsistent rainfall patterns are expected to increase in near future owing to climate change thereby necessitating the development of stress-tolerant and climate-resilient chickpea cultivars having region specific traits, which perform well under drought, heat, and/or low-temperature stress. Different approaches, such as genetic variability, genomic selection, molecular markers involving quantitative trait loci (QTLs), whole genome sequencing, and transcriptomics analysis have been exploited to improve chickpea production in extreme environments. Biotechnological tools have broadened our understanding of genetic basis as well as plants' responses to abiotic stresses in chickpea, and have opened opportunities to develop stress tolerant chickpea.

SELECTION OF CITATIONS
SEARCH DETAIL