Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 50(3): 1256-1268, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35104875

ABSTRACT

DNA nanostructures are a promising tool to deliver molecular payloads to cells. DNA origami structures, where long single-stranded DNA is folded into a compact nanostructure, present an attractive approach to package genes; however, effective delivery of genetic material into cell nuclei has remained a critical challenge. Here, we describe the use of DNA nanostructures encoding an intact human gene and a fluorescent protein encoding gene as compact templates for gene integration by CRISPR-mediated homology-directed repair (HDR). Our design includes CRISPR-Cas9 ribonucleoprotein binding sites on DNA nanostructures to increase shuttling into the nucleus. We demonstrate efficient shuttling and genomic integration of DNA nanostructures using transfection and electroporation. These nanostructured templates display lower toxicity and higher insertion efficiency compared to unstructured double-stranded DNA templates in human primary cells. Furthermore, our study validates virus-like particles as an efficient method of DNA nanostructure delivery, opening the possibility of delivering nanostructures in vivo to specific cell types. Together, these results provide new approaches to gene delivery with DNA nanostructures and establish their use as HDR templates, exploiting both their design features and their ability to encode genetic information. This work also opens a door to translate other DNA nanodevice functions, such as biosensing, into cell nuclei.


Subject(s)
Gene Transfer Techniques , Nanostructures , Active Transport, Cell Nucleus , CRISPR-Cas Systems , DNA/genetics , Gene Editing/methods , Genome , Humans
2.
mSphere ; : e0040121, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34133200

ABSTRACT

Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that frequently causes ventilator-associated pneumonia in intensive care units and chronic lung infections in cystic fibrosis patients. The rising prevalence of drug-resistant bacteria demands the exploration of new therapeutic avenues for treating P. aeruginosa infections. Perhaps the most thoroughly explored alternative is to use novel treatments to target pathogen virulence factors, like biofilm or toxin production. Gallium(III) nitrate is one such agent. It has been recognized for its ability to inhibit pathogen growth and biofilm formation in P. aeruginosa by disrupting bacterial iron homeostasis. However, irreversible sequestration by pyoverdine substantially limits its effectiveness. In this report, we show that disrupting pyoverdine production (genetically or chemically) potentiates the efficacy of gallium nitrate. Interestingly, we report that the pyoverdine inhibitor 5-fluorocytosine primarily functions as an antivirulent, even when it indirectly affects bacterial growth in the presence of gallium, and that low selective pressure for resistance occurs. We also demonstrate that the antibiotic tetracycline inhibits pyoverdine at concentrations below those required to prevent bacterial growth, and this activity allows it to synergize with gallium to inhibit bacterial growth and rescue Caenorhabditis elegans during P. aeruginosa pathogenesis. IMPORTANCE P. aeruginosa is one of the most common causative agents for ventilator-associated pneumonia and nosocomial bacteremia and is a leading cause of death in patients with cystic fibrosis. Pandrug-resistant strains of P. aeruginosa are increasingly identified in clinical samples and show resistance to virtually all major classes of antibiotics, including aminoglycosides, cephalosporins, and carbapenems. Gallium(III) nitrate has received considerable attention as an antipseudomonal agent that inhibits P. aeruginosa growth and biofilm formation by disrupting bacterial iron homeostasis. This report demonstrates that biosynthetic inhibitors of pyoverdine, such as 5-fluorocytosine and tetracycline, synergize with gallium nitrate to inhibit P. aeruginosa growth and biofilm formation, rescuing C. elegans hosts during pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL