Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nature ; 578(7793): 102-111, 2020 02.
Article in English | MEDLINE | ID: mdl-32025015

ABSTRACT

The discovery of drivers of cancer has traditionally focused on protein-coding genes1-4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5' region of TP53, in the 3' untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.


Subject(s)
Genome, Human/genetics , Mutation/genetics , Neoplasms/genetics , DNA Breaks , Databases, Genetic , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Humans , INDEL Mutation
2.
Mol Syst Biol ; 20(6): 676-701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664594

ABSTRACT

Splice-switching oligonucleotides (SSOs) are antisense compounds that act directly on pre-mRNA to modulate alternative splicing (AS). This study demonstrates the value that artificial intelligence/machine learning (AI/ML) provides for the identification of functional, verifiable, and therapeutic SSOs. We trained XGboost tree models using splicing factor (SF) pre-mRNA binding profiles and spliceosome assembly information to identify modulatory SSO binding sites on pre-mRNA. Using Shapley and out-of-bag analyses we also predicted the identity of specific SFs whose binding to pre-mRNA is blocked by SSOs. This step adds considerable transparency to AI/ML-driven drug discovery and informs biological insights useful in further validation steps. We applied this approach to previously established functional SSOs to retrospectively identify the SFs likely to regulate those events. We then took a prospective validation approach using a novel target in triple negative breast cancer (TNBC), NEDD4L exon 13 (NEDD4Le13). Targeting NEDD4Le13 with an AI/ML-designed SSO decreased the proliferative and migratory behavior of TNBC cells via downregulation of the TGFß pathway. Overall, this study illustrates the ability of AI/ML to extract actionable insights from RNA-seq data.


Subject(s)
Alternative Splicing , Artificial Intelligence , Machine Learning , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Oligonucleotides, Antisense/genetics , Cell Movement/genetics , Spliceosomes/metabolism , Spliceosomes/genetics , Oligonucleotides/genetics , Female
4.
BMC Bioinformatics ; 15 Suppl 16: S7, 2014.
Article in English | MEDLINE | ID: mdl-25521245

ABSTRACT

BACKGROUND: The advent of human genome sequencing project has led to a spurt in the number of protein sequences in the databanks. Success of structure based drug discovery severely hinges on the availability of structures. Despite significant progresses in the area of experimental protein structure determination, the sequence-structure gap is continually widening. Data driven homology based computational methods have proved successful in predicting tertiary structures for sequences sharing medium to high sequence similarities. With dwindling similarities of query sequences, advanced homology/ ab initio hybrid approaches are being explored to solve structure prediction problem. Here we describe Bhageerath-H, a homology/ ab initio hybrid software/server for predicting protein tertiary structures with advancing drug design attempts as one of the goals. RESULTS: Bhageerath-H web-server was validated on 75 CASP10 targets which showed TM-scores ≥ 0.5 in 91% of the cases and Cα RMSDs ≤ 5 Å from the native in 58% of the targets, which is well above the CASP10 water mark. Comparison with some leading servers demonstrated the uniqueness of the hybrid methodology in effectively sampling conformational space, scoring best decoys and refining low resolution models to high and medium resolution. CONCLUSION: Bhageerath-H methodology is web enabled for the scientific community as a freely accessible web server. The methodology is fielded in the on-going CASP11 experiment.


Subject(s)
Computational Biology/methods , Models, Theoretical , Proteins/chemistry , Quantum Theory , Humans , Protein Structure, Tertiary , Software
5.
J Comput Chem ; 34(22): 1925-36, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23728619

ABSTRACT

One of the major challenges for protein tertiary structure prediction strategies is the quality of conformational sampling algorithms, which can effectively and readily search the protein fold space to generate near-native conformations. In an effort to advance the field by making the best use of available homology as well as fold recognition approaches along with ab initio folding methods, we have developed Bhageerath-H Strgen, a homology/ab initio hybrid algorithm for protein conformational sampling. The methodology is tested on the benchmark CASP9 dataset of 116 targets. In 93% of the cases, a structure with TM-score ≥ 0.5 is generated in the pool of decoys. Further, the performance of Bhageerath-H Strgen was seen to be efficient in comparison with different decoy generation methods. The algorithm is web enabled as Bhageerath-H Strgen web tool which is made freely accessible for protein decoy generation (http://www.scfbio-iitd.res.in/software/Bhageerath-HStrgen1.jsp).


Subject(s)
Algorithms , Proteins/chemistry , Quantum Theory , Models, Molecular , Protein Conformation , Protein Folding
6.
Front Immunol ; 14: 1083333, 2023.
Article in English | MEDLINE | ID: mdl-36891301

ABSTRACT

Introduction: PL8177 is a potent and selective agonist of the melanocortin 1 receptor (MC1R). PL8177 has shown efficacy in reversing intestinal inflammation in a cannulated rat ulcerative colitis model. To facilitate oral delivery, a novel, polymer-encapsulated formulation of PL8177 was developed. This formulation was tested in 2 rat ulcerative colitis models and evaluated for distribution, in vivo, in rats, dogs, and humans. Methods: The rat models of colitis were induced by treatment with 2,4-dinitrobenzenesulfonic acid or dextran sulfate sodium. Single nuclei RNA sequencing of colon tissues was performed to characterize the mechanism of action. The distribution and concentration of PL8177 and the main metabolite within the GI tract after a single oral dose of PL8177 was investigated in rats and dogs. A phase 0 clinical study using a single microdose (70 µg) of [14C]-labeled PL8177 investigated the release of PL8177 in the colon of healthy men after oral administration. Results: Rats treated with 50 µg oral PL8177 demonstrated significantly lower macroscopic colon damage scores and improvement in colon weight, stool consistency, and fecal occult blood vs the vehicle without active drug. Histopathology analysis resulted in the maintenance of intact colon structure and barrier, reduced immune cell infiltration, and increased enterocytes with PL8177 treatment. Transcriptome data show that oral PL8177 50 µg treatment causes relative cell populations and key gene expressions levels to move closer to healthy controls. Compared with vehicle, treated colon samples show negative enrichment of immune marker genes and diverse immune-related pathways. In rats and dogs, orally administered PL8177 was detected at higher amounts in the colon vs upper GI tract. [14C]-PL8177 and the main metabolite were detected in the feces but not in the plasma and urine in humans. This suggests that the parent drug [14C]-PL8177 was released from the polymer formulation and metabolized within the GI tract, where it would be expected to exert its effect. Conclusion: Collectively, these findings support further research into the oral formulation of PL8177 as a possible therapeutic for GI inflammatory diseases in humans.


Subject(s)
Colitis, Ulcerative , Colitis , Inflammatory Bowel Diseases , Humans , Male , Rats , Dogs , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Receptor, Melanocortin, Type 1 , Inflammatory Bowel Diseases/drug therapy , Colitis/chemically induced , Inflammation , alpha-MSH
7.
Nat Commun ; 11(1): 729, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32024854

ABSTRACT

The catalog of cancer driver mutations in protein-coding genes has greatly expanded in the past decade. However, non-coding cancer driver mutations are less well-characterized and only a handful of recurrent non-coding mutations, most notably TERT promoter mutations, have been reported. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancer across 38 tumor types, we perform multi-faceted pathway and network analyses of non-coding mutations across 2583 whole cancer genomes from 27 tumor types compiled by the ICGC/TCGA PCAWG project that was motivated by the success of pathway and network analyses in prioritizing rare mutations in protein-coding genes. While few non-coding genomic elements are recurrently mutated in this cohort, we identify 93 genes harboring non-coding mutations that cluster into several modules of interacting proteins. Among these are promoter mutations associated with reduced mRNA expression in TP53, TLE4, and TCF4. We find that biological processes had variable proportions of coding and non-coding mutations, with chromatin remodeling and proliferation pathways altered primarily by coding mutations, while developmental pathways, including Wnt and Notch, altered by both coding and non-coding mutations. RNA splicing is primarily altered by non-coding mutations in this cohort, and samples containing non-coding mutations in well-known RNA splicing factors exhibit similar gene expression signatures as samples with coding mutations in these genes. These analyses contribute a new repertoire of possible cancer genes and mechanisms that are altered by non-coding mutations and offer insights into additional cancer vulnerabilities that can be investigated for potential therapeutic treatments.


Subject(s)
Gene Expression Regulation, Neoplastic , Mutation , Neoplasms/genetics , RNA Splicing , Chromatin Assembly and Disassembly , Computational Biology/methods , Databases, Genetic , Genome, Human , Humans , Metabolic Networks and Pathways/genetics , Neoplasms/metabolism , Promoter Regions, Genetic
8.
Cell Syst ; 8(5): 446-455.e8, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31078526

ABSTRACT

Recent studies have shown that mutations at non-coding elements, such as promoters and enhancers, can act as cancer drivers. However, an important class of non-coding elements, namely CTCF insulators, has been overlooked in the previous driver analyses. We used insulator annotations from CTCF and cohesin ChIA-PET and analyzed somatic mutations in 1,962 whole genomes from 21 cancer types. Using the heterogeneous patterns of transcription-factor-motif disruption, functional impact, and recurrence of mutations, we developed a computational method that revealed 21 insulators showing signals of positive selection. In particular, mutations in an insulator in multiple cancer types, including 16% of melanoma samples, are associated with TGFB1 up-regulation. Using CRISPR-Cas9, we find that alterations at two of the most frequently mutated regions in this insulator increase cell growth by 40%-50%, supporting the role of this boundary element as a cancer driver. Thus, our study reveals several CTCF insulators as putative cancer drivers.


Subject(s)
CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Animals , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , Gene Expression Regulation, Neoplastic/genetics , Genome, Human , Humans , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Promoter Regions, Genetic/genetics , Repressor Proteins/genetics , Cohesins
9.
Curr Protoc Bioinformatics ; 57: 15.11.1-15.11.17, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28463398

ABSTRACT

The identification of non-coding drivers remains a challenge and bottleneck for the use of whole-genome sequencing in the clinic. FunSeq2 is a computational tool for annotation and prioritization of somatic mutations in coding and non-coding regions. It integrates a data context made from large-scale genomic datasets and uses a high-throughput variant prioritization pipeline. This unit provides guidelines for installing and running FunSeq2 to (a) annotate and prioritize variants, (b) incorporate user-defined annotations, and (c) detect differential gene expression. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Molecular Sequence Annotation/methods , Software , Genome/genetics , Genomics , Humans
10.
Genome Biol ; 18(1): 141, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28750683

ABSTRACT

We report a novel computational method, RegNetDriver, to identify tumorigenic drivers using the combined effects of coding and non-coding single nucleotide variants, structural variants, and DNA methylation changes in the DNase I hypersensitivity based regulatory network. Integration of multi-omics data from 521 prostate tumor samples indicated a stronger regulatory impact of structural variants, as they affect more transcription factor hubs in the tissue-specific network. Moreover, crosstalk between transcription factor hub expression modulated by structural variants and methylation levels likely leads to the differential expression of target genes. We report known prostate tumor regulatory drivers and nominate novel transcription factors (ERF, CREB3L1, and POU2F2), which are supported by functional validation.


Subject(s)
Algorithms , Carcinogenesis/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Gene Expression Regulation, Neoplastic , Nerve Tissue Proteins/genetics , Octamer Transcription Factor-2/genetics , Prostatic Neoplasms/genetics , Repressor Proteins/genetics , Binding Sites , Carcinogenesis/metabolism , Carcinogenesis/pathology , Chromosome Mapping , Cyclic AMP Response Element-Binding Protein/metabolism , DNA Methylation , Deoxyribonuclease I , Epigenesis, Genetic , Gene Regulatory Networks , Humans , Male , Nerve Tissue Proteins/metabolism , Octamer Transcription Factor-2/metabolism , Organ Specificity , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , Protein Interaction Mapping , Repressor Proteins/metabolism
11.
Nat Commun ; 8(1): 48, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28663546

ABSTRACT

Prostate cancer is a highly heritable molecularly and clinically heterogeneous disease. To discover germline events involved in prostate cancer predisposition, we develop a computational approach to nominate heritable facilitators of somatic genomic events in the context of the androgen receptor signaling. Here, we use a ranking score and benign prostate transcriptomes to identify a non-coding polymorphic regulatory element at 7p14.3 that associates with DNA repair and hormone-regulated transcript levels and with an early recurrent prostate cancer-specific somatic mutation in the Speckle-Type POZ protein (SPOP) gene. The locus shows allele-specific activity that is concomitantly modulated by androgen receptor and by CCAAT/enhancer-binding protein (C/EBP) beta (CEBPB). Deletion of this locus via CRISPR-Cas9 leads to deregulation of the genes predicted to interact with the 7p14.3 locus by Hi-C chromosome conformation capture data. This study suggests that a polymorphism at 7p14.3 may predispose to SPOP mutant prostate cancer subclass through a hormone-dependent DNA damage response.Prostate cancer is a heterogeneous disease, and many cases show somatic mutations of SPOP. Here, the authors show that a non-coding polymorphic regulatory element at 7p14.3 may predispose to SPOP mutant prostate cancer subclass through a hormone dependent DNA damage response.


Subject(s)
Neoplasm Recurrence, Local , Prostatic Neoplasms/genetics , Transcriptome , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/physiology , Genotype , Humans , Male , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL