Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 572(7771): 609-613, 2019 08.
Article in English | MEDLINE | ID: mdl-31435016

ABSTRACT

Mitochondria provide chemical energy for endoergonic reactions in the form of ATP, and their activity must meet cellular energy requirements, but the mechanisms that link organelle performance to ATP levels are poorly understood. Here we confirm the existence of a protein complex localized in mitochondria that mediates ATP-dependent potassium currents (that is, mitoKATP). We show that-similar to their plasma membrane counterparts-mitoKATP channels are composed of pore-forming and ATP-binding subunits, which we term MITOK and MITOSUR, respectively. In vitro reconstitution of MITOK together with MITOSUR recapitulates the main properties of mitoKATP. Overexpression of MITOK triggers marked organelle swelling, whereas the genetic ablation of this subunit causes instability in the mitochondrial membrane potential, widening of the intracristal space and decreased oxidative phosphorylation. In a mouse model, the loss of MITOK suppresses the cardioprotection that is elicited by pharmacological preconditioning induced by diazoxide. Our results indicate that mitoKATP channels respond to the cellular energetic status by regulating organelle volume and function, and thereby have a key role in mitochondrial physiology and potential effects on several pathological processes.


Subject(s)
Adenosine Triphosphate/metabolism , Mitochondria, Heart/metabolism , Potassium Channels/metabolism , Animals , Cardiotonic Agents/pharmacology , Diazoxide/pharmacology , Electrophysiological Phenomena , Heart/drug effects , Heart/physiology , Ischemic Preconditioning, Myocardial , Male , Membrane Potential, Mitochondrial , Mice , Mitochondria, Heart/drug effects , Mitochondria, Heart/pathology , Mitochondria, Heart/physiology , Organ Size/drug effects , Oxidative Phosphorylation , Potassium/metabolism , Potassium Channels/chemistry , Protein Subunits/chemistry , Protein Subunits/metabolism
2.
Biochem Biophys Res Commun ; 644: 70-78, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36634584

ABSTRACT

During myocardial infarction, cellular debris is released, causing a sterile inflammation via pattern recognition receptors. These reactions amplify damage and promotes secondary heart failure. The pattern recognition receptor, Toll-like receptor 9 (TLR9) detects immunogenic fragments of endogenous DNA, inducing inflammation by NFκB. The p66ShcA adaptor protein plays an important role in both ischemic myocardial damage and immune responses. We hypothesized that p66ShcA adaptor protein promotes DNA-sensing signaling via the TLR9 pathway after myocardial infarction. TLR9 protein expression increased in cardiac tissue from patients with end-stage heart failure due to ischemic heart disease. Myocardial ischemia in mice in vivo induced gene expression of key TLR9 pathway proteins (MyD88 and Unc93b1). In this model, a functional link between TLR9 and p66ShcA was revealed as; (i) ischemia-induced upregulation of TLR9 protein was abrogated in myocardium of p66ShcA knockout mice; (ii) when p66ShcA was overexpressed in NFkB reporter cells stably expressing TLR9, NFkB-activation increased during stimulation with the TLR9 agonist CpG B; (iii) in cardiac fibroblasts, p66ShcA overexpression caused TLR9 upregulation. Co-immunoprecipitation showed that ShcA proteins and TLR9 may be found in the same protein complex, which was dissipated upon TLR9 stimulation in vivo. A proximity assay confirmed the co-localization of TLR9 and ShcA proteins. The systemic immune response after myocardial ischemia was dampened in p66ShcA knockout mice as interleukin-4, -17 and -22 expression in mononuclear cells isolated from spleens was reduced. In conclusion, p66ShcA adaptor may be an interaction partner and a regulator of the TLR9 pathway post-infarction.


Subject(s)
Heart Failure , Myocardial Infarction , Myocardial Ischemia , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Inflammation , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/metabolism , NF-kappa B/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Toll-Like Receptor 9/metabolism
3.
Basic Res Cardiol ; 118(1): 41, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37792081

ABSTRACT

Numerous physiological and pathological roles have been attributed to the formation of mitochondrial reactive oxygen species (ROS). However, the individual contribution of different mitochondrial processes independently of bioenergetics remains elusive and clinical treatments unavailable. A notable exception to this complexity is found in the case of monoamine oxidases (MAOs). Unlike other ROS-producing enzymes, especially within mitochondria, MAOs possess a distinct combination of defined molecular structure, substrate specificity, and clinically accessible inhibitors. Another significant aspect of MAO activity is the simultaneous generation of hydrogen peroxide alongside highly reactive aldehydes and ammonia. These three products synergistically impair mitochondrial function at various levels, ultimately jeopardizing cellular metabolic integrity and viability. This pathological condition arises from exacerbated MAO activity, observed in many cardiovascular diseases, thus justifying the exploration of MAO inhibitors as effective cardioprotective strategy. In this context, we not only summarize the deleterious roles of MAOs in cardiac pathologies and the positive effects resulting from genetic or pharmacological MAO inhibition, but also discuss recent findings that expand our understanding on the role of MAO in gene expression and cardiac development.


Subject(s)
Cardiovascular Diseases , Monoamine Oxidase , Humans , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/physiology , Heart
4.
Basic Res Cardiol ; 118(1): 4, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670288

ABSTRACT

During embryonic development, cardiomyocytes undergo differentiation and maturation, processes that are tightly regulated by tissue-specific signaling cascades. Although redox signaling pathways involved in cardiomyogenesis are established, the exact sources responsible for reactive oxygen species (ROS) formation remain elusive. The present study investigates whether ROS produced by the mitochondrial flavoenzyme monoamine oxidase A (MAO-A) play a role in cardiomyocyte differentiation from human induced pluripotent stem cells (hiPSCs). Wild type (WT) and MAO-A knock out (KO) hiPSCs were generated by CRISPR/Cas9 genome editing and subjected to cardiomyocyte differentiation. Mitochondrial ROS levels were lower in MAO-A KO compared to the WT cells throughout the differentiation process. MAO-A KO hiPSC-derived cardiomyocytes (hiPSC-CMs) displayed sarcomere disarray, reduced α- to ß-myosin heavy chain ratio, GATA4 upregulation and lower macroautophagy levels. Functionally, genetic ablation of MAO-A negatively affected intracellular Ca2+ homeostasis in hiPSC-CMs. Mechanistically, MAO-A generated ROS contributed to the activation of AKT signaling that was considerably attenuated in KO cells. In addition, MAO-A ablation caused a reduction in WNT pathway gene expression consistent with its reported stimulation by ROS. As a result of WNT downregulation, expression of MESP1 and NKX2.5 was significantly decreased in MAO-A KO cells. Finally, MAO-A re-expression during differentiation rescued expression levels of cardiac transcription factors, contractile structure, and intracellular Ca2+ homeostasis. Taken together, these results suggest that MAO-A mediated ROS generation is necessary for the activation of AKT and WNT signaling pathways during cardiac lineage commitment and for the differentiation of fully functional human cardiomyocytes.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Cell Differentiation/physiology , Wnt Signaling Pathway
5.
Pharmacol Rev ; 72(4): 801-828, 2020 10.
Article in English | MEDLINE | ID: mdl-32859763

ABSTRACT

Reactive oxygen species (ROS) have been correlated with almost every human disease. Yet clinical exploitation of these hypotheses by pharmacological modulation of ROS has been scarce to nonexistent. Are ROS, thus, irrelevant for disease? No. One key misconception in the ROS field has been its consideration as a rather detrimental metabolic by-product of cell metabolism, and thus, any approach eliminating ROS to a certain tolerable level would be beneficial. We now know, instead, that ROS at every concentration, low or high, can serve many essential signaling and metabolic functions. This likely explains why systemic, nonspecific antioxidants have failed in the clinic, often with neutral and sometimes even detrimental outcomes. Recently, drug development has focused, instead, on identifying and selectively modulating ROS enzymatic sources that in a given constellation cause disease while leaving ROS physiologic signaling and metabolic functions intact. As sources, the family of NADPH oxidases stands out as the only enzyme family solely dedicated to ROS formation. Selectively targeting disease-relevant ROS-related proteins is already quite advanced, as evidenced by several phase II/III clinical trials and the first drugs having passed registration. The ROS field is expanding by including target enzymes and maturing to resemble more and more modern, big data-enhanced drug discovery and development, including network pharmacology. By defining a disease based on a distinct mechanism, in this case ROS dysregulation, and not by a symptom or phenotype anymore, ROS pharmacology is leaping forward from a clinical underperformer to a proof of concept within the new era of mechanism-based precision medicine. SIGNIFICANCE STATEMENT: Despite being correlated to almost every human disease, nearly no ROS modulator has been translated to the clinics yet. Here, we move far beyond the old-fashioned misconception of ROS as detrimental metabolic by-products and suggest 1) novel pharmacological targeting focused on selective modulation of ROS enzymatic sources, 2) mechanism-based redefinition of diseases, and 3) network pharmacology within the ROS field, altogether toward the new era of ROS pharmacology in precision medicine.


Subject(s)
Antioxidants/pharmacology , Oxidative Stress/drug effects , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Animals , Antioxidants/therapeutic use , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Oxidation-Reduction/drug effects , Randomized Controlled Trials as Topic
6.
Basic Res Cardiol ; 117(1): 37, 2022 07 17.
Article in English | MEDLINE | ID: mdl-35842861

ABSTRACT

We have recently identified a pool of intracellular ß1 adrenergic receptors (ß1ARs) at the sarcoplasmic reticulum (SR) crucial for cardiac function. Here, we aim to characterize the integrative control of intracellular catecholamine for subcellular ß1AR signaling and cardiac function. Using anchored Förster resonance energy transfer (FRET) biosensors and transgenic mice, we determined the regulation of compartmentalized ß1AR-PKA signaling at the SR and plasma membrane (PM) microdomains by organic cation transporter 3 (OCT3) and monoamine oxidase A (MAO-A), two critical modulators of catecholamine uptake and homeostasis. Additionally, we examined local PKA substrate phosphorylation and excitation-contraction coupling in cardiomyocyte. Cardiac-specific deletion of MAO-A (MAO-A-CKO) elevates catecholamines and cAMP levels in the myocardium, baseline cardiac function, and adrenergic responses. Both MAO-A deletion and inhibitor (MAOi) selectively enhance the local ß1AR-PKA activity at the SR but not PM, and augment phosphorylation of phospholamban, Ca2+ cycling, and myocyte contractile response. Overexpression of MAO-A suppresses the SR-ß1AR-PKA activity and PKA phosphorylation. However, deletion or inhibition of OCT3 by corticosterone prevents the effects induced by MAOi and MAO-A deletion in cardiomyocytes. Deletion or inhibition of OCT3 also negates the effects of MAOi and MAO-A deficiency in cardiac function and adrenergic responses in vivo. Our data show that MAO-A and OCT3 act in concert to fine-tune the intracellular SR-ß1AR-PKA signaling and cardiac fight-or-flight response. We reveal a drug contraindication between anti-inflammatory corticosterone and anti-depressant MAOi in modulating adrenergic regulation in the heart, providing novel perspectives of these drugs with cardiac implications.


Subject(s)
Corticosterone , Cyclic AMP-Dependent Protein Kinases , Adrenergic Agents/metabolism , Adrenergic Agents/pharmacology , Animals , Calcium/metabolism , Catecholamines/metabolism , Catecholamines/pharmacology , Cations/metabolism , Cations/pharmacology , Corticosterone/metabolism , Corticosterone/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/pharmacology , Mice , Monoamine Oxidase/metabolism , Monoamine Oxidase/pharmacology , Myocardial Contraction , Myocytes, Cardiac/metabolism , Phosphorylation , Receptors, Adrenergic, beta-1/genetics , Receptors, Adrenergic, beta-1/metabolism , Sarcoplasmic Reticulum
7.
J Biol Chem ; 295(48): 16217-16218, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33246940

ABSTRACT

Under conditions of high nutrient availability and low ATP synthesis, mitochondria generate reactive oxygen species (ROS) that must be removed to avoid cell injury. Among the enzymes involved in this scavenging process, peroxidases play a crucial role, using NADPH provided mostly by nicotinamide nucleotide transhydrogenase (NNT). However, scarce information is available on how and to what extent ROS formation is linked to mitochondrial oxygen consumption. A new study by Smith et al. shows that NNT activity maintains low ROS levels by means of a fine modulation of mitochondrial oxygen utilization.


Subject(s)
NADP Transhydrogenases , Energy Metabolism , Mitochondria/metabolism , NADP Transhydrogenases/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism
8.
J Cell Mol Med ; 24(13): 7102-7114, 2020 07.
Article in English | MEDLINE | ID: mdl-32490600

ABSTRACT

Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.


Subject(s)
Cardiotonic Agents/metabolism , Ion Channels/metabolism , Mitochondria, Heart/metabolism , Animals , Calcium Channels/metabolism , Humans , Models, Biological , Translational Research, Biomedical
9.
J Cell Mol Med ; 24(12): 6510-6522, 2020 06.
Article in English | MEDLINE | ID: mdl-32383522

ABSTRACT

Redox signalling in mitochondria plays an important role in myocardial ischaemia/reperfusion (I/R) injury and in cardioprotection. Reactive oxygen and nitrogen species (ROS/RNS) modify cellular structures and functions by means of covalent changes in proteins including among others S-nitros(yl)ation by nitric oxide (NO) and its derivatives, and S-sulphydration by hydrogen sulphide (H2 S). Many enzymes are involved in the mitochondrial formation and handling of ROS, NO and H2 S under physiological and pathological conditions. In particular, the balance between formation and removal of reactive species is impaired during I/R favouring their accumulation. Therefore, various interventions aimed at decreasing mitochondrial ROS accumulation have been developed and have shown cardioprotective effects in experimental settings. However, ROS, NO and H2 S play also a role in endogenous cardioprotection, as in the case of ischaemic pre-conditioning, so that preventing their increase might hamper self-defence mechanisms. The aim of the present review was to provide a critical analysis of formation and role of reactive species, NO and H2 S in mitochondria, with a special emphasis on mechanisms of injury and protection that determine the fate of hearts subjected to I/R. The elucidation of the signalling pathways of ROS, NO and H2 S is likely to reveal novel molecular targets for cardioprotection that could be modulated by pharmacological agents to prevent I/R injury.


Subject(s)
Cardiotonic Agents/therapeutic use , Hydrogen Sulfide/metabolism , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Animals , Humans
10.
Arch Biochem Biophys ; 696: 108662, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33159890

ABSTRACT

Environmental pollution is a major cause of global mortality and burden of disease. All chemical pollution forms together may be responsible for up to 12 million annual excess deaths as estimated by the Lancet Commission on pollution and health as well as the World Health Organization. Ambient air pollution by particulate matter (PM) and ozone was found to be associated with an all-cause mortality rate of up to 9 million in the year 2015, with the majority being of cerebro- and cardiovascular nature (e.g. stroke and ischemic heart disease). Recent evidence suggests that exposure to airborne particles and gases contributes to and accelerates neurodegenerative diseases. Especially, airborne toxic particles contribute to these adverse health effects. Whereas it is well established that air pollution in the form of PM may lead to dysregulation of neurohormonal stress pathways and may trigger inflammation as well as oxidative stress, leading to secondary damage of cardiovascular structures, the mechanistic impact of PM-induced mitochondrial damage and dysfunction is not well established. With the present review we will discuss similarities between mitochondrial damage and dysfunction observed in the development and progression of cardiovascular disease and neurodegeneration as well as those adverse mitochondrial pathomechanisms induced by airborne PM.


Subject(s)
Air Pollutants/toxicity , Cardiovascular Diseases/physiopathology , Mitochondria/drug effects , Neurodegenerative Diseases/physiopathology , Oxidative Stress/drug effects , Particulate Matter/toxicity , Animals , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Humans , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/etiology
11.
Pharmacol Res ; 151: 104548, 2020 01.
Article in English | MEDLINE | ID: mdl-31759087

ABSTRACT

Ischemia/reperfusion (I/R) injury is mediated in large part by opening of the mitochondrial permeability transition pore (PTP). Consequently, inhibitors of the PTP hold great promise for the treatment of a variety of cardiovascular disorders. At present, PTP inhibition is obtained only through the use of drugs (e.g. cyclosporine A, CsA) targeting cyclophilin D (CyPD) which is a key modulator, but not a structural component of the PTP. This limitation might explain controversial findings in clinical studies. Therefore, we investigated the protective effects against I/R injury of small-molecule inhibitors of the PTP (63 and TR002) that do not target CyPD. Both compounds exhibited a dose-dependent inhibition of PTP opening in isolated mitochondria and were more potent than CsA. Notably, PTP inhibition was observed also in mitochondria devoid of CyPD. Compounds 63 and TR002 prevented PTP opening and mitochondrial depolarization induced by Ca2+ overload and by reactive oxygen species in neonatal rat ventricular myocytes (NRVMs). Remarkably, both compounds prevented cell death, contractile dysfunction and sarcomeric derangement induced by anoxia/reoxygenation injury in NRVMs at sub-micromolar concentrations, and were more potent than CsA. Cardioprotection was observed also in adult mouse ventricular myocytes and human iPSc-derived cardiomyocytes, as well as ex vivo in perfused hearts. Thus, this study demonstrates that 63 and TR002 represent novel cardioprotective agents that inhibit PTP opening independent of CyPD targeting.


Subject(s)
Cardiotonic Agents/therapeutic use , Mitochondrial Permeability Transition Pore/antagonists & inhibitors , Myocardial Reperfusion Injury/drug therapy , Small Molecule Libraries/therapeutic use , Animals , Cardiotonic Agents/pharmacology , Cell Line , Cells, Cultured , Humans , Mice, Inbred C57BL , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Permeability Transition Pore/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Rats, Sprague-Dawley , Rats, Wistar , Small Molecule Libraries/pharmacology
12.
EMBO Rep ; 19(2): 257-268, 2018 02.
Article in English | MEDLINE | ID: mdl-29217657

ABSTRACT

The permeability transition pore (PTP) is a Ca2+-dependent mitochondrial channel whose opening causes a permeability increase in the inner membrane to ions and solutes. The most potent inhibitors are matrix protons, with channel block at pH 6.5. Inhibition is reversible, mediated by histidyl residue(s), and prevented by their carbethoxylation by diethylpyrocarbonate (DPC), but their assignment is unsolved. We show that PTP inhibition by H+ is mediated by the highly conserved histidyl residue (H112 in the human mature protein) of oligomycin sensitivity conferral protein (OSCP) subunit of mitochondrial F1FO (F)-ATP synthase, which we also show to undergo carbethoxylation after reaction of mitochondria with DPC. Mitochondrial PTP-dependent swelling cannot be inhibited by acidic pH in H112Q and H112Y OSCP mutants, and the corresponding megachannels (the electrophysiological counterpart of the PTP) are insensitive to inhibition by acidic pH in patch-clamp recordings of mitoplasts. Cells harboring the H112Q and H112Y mutations are sensitized to anoxic cell death at acidic pH. These results demonstrate that PTP channel formation and its inhibition by H+ are mediated by the F-ATP synthase.


Subject(s)
Histidine/metabolism , Hydrogen-Ion Concentration , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Animals , Calcium/metabolism , Calcium Signaling , Cattle , Cell Line , Cell Membrane Permeability , Histidine/chemistry , Humans , Hydrolysis , Hypoxia/metabolism , Mice , Mitochondria, Liver/metabolism , Mitochondrial Permeability Transition Pore , Mitochondrial Proton-Translocating ATPases/chemistry , Models, Molecular , Molecular Dynamics Simulation , Oxygen Consumption , Protein Conformation , Protein Subunits
13.
Cardiovasc Drugs Ther ; 34(6): 823-834, 2020 12.
Article in English | MEDLINE | ID: mdl-32979176

ABSTRACT

PURPOSE: HFpEF (heart failure with preserved ejection fraction) is a major consequence of diabetic cardiomyopathy with no effective treatments. Here, we have characterized Akita mice as a preclinical model of HFpEF and used it to confirm the therapeutic efficacy of the mitochondria-targeted dicarbonyl scavenger, MitoGamide. METHODS AND RESULTS: A longitudinal echocardiographic analysis confirmed that Akita mice develop diastolic dysfunction with reduced E peak velocity, E/A ratio and extended isovolumetric relaxation time (IVRT), while the systolic function remains comparable with wild-type mice. The myocardium of Akita mice had a decreased ATP/ADP ratio, elevated mitochondrial oxidative stress and increased organelle density, compared with that of wild-type mice. MitoGamide, a mitochondria-targeted 1,2-dicarbonyl scavenger, exhibited good stability in vivo, uptake into cells and mitochondria and reactivity with dicarbonyls. Treatment of Akita mice with MitoGamide for 12 weeks significantly improved the E/A ratio compared with the vehicle-treated group. CONCLUSION: Our work confirms that the Akita mouse model of diabetes replicates key clinical features of diabetic HFpEF, including cardiac and mitochondrial dysfunction. Furthermore, in this independent study, MitoGamide treatment improved diastolic function in Akita mice.


Subject(s)
Benzamides/pharmacology , Cardiovascular Agents/pharmacology , Diabetic Cardiomyopathies/prevention & control , Heart Failure/prevention & control , Stroke Volume/drug effects , Ventricular Dysfunction, Left/prevention & control , Ventricular Function, Left/drug effects , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Disease Models, Animal , Glycation End Products, Advanced/metabolism , Heart Failure/metabolism , Heart Failure/physiopathology , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
14.
Proc Natl Acad Sci U S A ; 114(43): E9006-E9015, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29073097

ABSTRACT

The mitochondrial Ca2+ uniporter complex (MCUC) is a multimeric ion channel which, by tuning Ca2+ influx into the mitochondrial matrix, finely regulates metabolic energy production. In the heart, this dynamic control of mitochondrial Ca2+ uptake is fundamental for cardiomyocytes to adapt to either physiologic or pathologic stresses. Mitochondrial calcium uniporter (MCU), which is the core channel subunit of MCUC, has been shown to play a critical role in the response to ß-adrenoreceptor stimulation occurring during acute exercise. The molecular mechanisms underlying the regulation of MCU, in conditions requiring chronic increase in energy production, such as physiologic or pathologic cardiac growth, remain elusive. Here, we show that microRNA-1 (miR-1), a member of the muscle-specific microRNA (myomiR) family, is responsible for direct and selective targeting of MCU and inhibition of its translation, thereby affecting the capacity of the mitochondrial Ca2+ uptake machinery. Consistent with the role of miR-1 in heart development and cardiomyocyte hypertrophic remodeling, we additionally found that MCU levels are inversely related with the myomiR content, in murine and, remarkably, human hearts from both physiologic (i.e., postnatal development and exercise) and pathologic (i.e., pressure overload) myocardial hypertrophy. Interestingly, the persistent activation of ß-adrenoreceptors is likely one of the upstream repressors of miR-1 as treatment with ß-blockers in pressure-overloaded mouse hearts prevented its down-regulation and the consequent increase in MCU content. Altogether, these findings identify the miR-1/MCU axis as a factor in the dynamic adaptation of cardiac cells to hypertrophy.


Subject(s)
Calcium Channels/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Animals , Aorta/cytology , Calcium Channels/genetics , Cardiomegaly/metabolism , Energy Metabolism , Humans , Mice , MicroRNAs/genetics , Physical Conditioning, Animal , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, beta/metabolism
15.
Int J Mol Sci ; 21(10)2020 May 12.
Article in English | MEDLINE | ID: mdl-32408480

ABSTRACT

Oxidative stress plays a key role for the development of cardiovascular, metabolic, and neurodegenerative disease. This concept has been proven by using the approach of genetic deletion of reactive oxygen and nitrogen species (RONS) producing, pro-oxidant enzymes as well as by the overexpression of RONS detoxifying, antioxidant enzymes leading to an amelioration of the severity of diseases. Vice versa, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of RONS detoxifying enzymes. We have previously identified cross talk mechanisms between different sources of RONS, which can amplify the oxidative stress-mediated damage. Here, the pathways and potential mechanisms leading to this cross talk are analyzed in detail and highlighted by selected examples from the current literature and own data including hypoxia, angiotensin II (AT-II)-induced hypertension, nitrate tolerance, aging, and others. The general concept of redox-based activation of RONS sources via "kindling radicals" and enzyme-specific "redox switches" as well as the interaction with redox-sensitive inflammatory pathways are discussed. Here, we present evidence for the existence of such cross talk mechanisms in the setting of diabetes and critically assess their contribution to the severity of diabetic complications.


Subject(s)
Cardiovascular Diseases/metabolism , Diabetes Mellitus/metabolism , Inflammation/metabolism , Mitochondria/metabolism , NADPH Oxidases/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Animals , Disease Progression , Humans
16.
Anal Chem ; 90(9): 5687-5695, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29595056

ABSTRACT

Analyses of cellular responses to fast oxygen dynamics are challenging and require ad hoc technological solutions, especially when decoupling from liquid media composition is required. In this work, we present a microfluidic device specifically designed for culture analyses with high resolution and magnification objectives, providing full optical access to the cell culture chamber. This feature allows fluorescence-based assays, photoactivated surface chemistry, and live cell imaging under tightly controlled pO2 environments. The device has a simple design, accommodates three independent cell cultures, and can be employed by users with basic cell culture training in studies requiring fast oxygen dynamics, defined media composition, and in-line data acquisition with optical molecular probes. We apply this technology to produce an oxygen/glucose deprived (OGD) environment and analyze cell mortality in murine and human cardiac cultures. Neonatal rat ventricular cardiomyocytes show an OGD time-dependent sensitivity, resulting in a robust and reproducible 66 ± 5% death rate after 3 h of stress. Applying an equivalent stress to human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) provides direct experimental evidence for fetal-like OGD-resistant phenotype. Investigation on the nature of such phenotype exposed large glycogen deposits. We propose a culture strategy aimed at depleting these intracellular energy stores and concurrently activate positive regulation of aerobic metabolic molecular markers. The observed process, however, is not sufficient to induce an OGD-sensitive phenotype in hiPS-CMs, highlighting defective development of mature aerobic metabolism in vitro.


Subject(s)
Glucose/analysis , Induced Pluripotent Stem Cells/chemistry , Microfluidic Analytical Techniques , Optical Imaging , Oxygen/analysis , Animals , Cells, Cultured , Glucose/deficiency , Glucose/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Oxygen/metabolism , Rats , Rats, Sprague-Dawley
18.
Circ Res ; 116(11): 1850-62, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25999424

ABSTRACT

Mitochondria not only play a fundamental role in heart physiology but are also key effectors of dysfunction and death. This dual role assumes a new meaning after recent advances on the nature and regulation of the permeability transition pore, an inner membrane channel whose opening requires matrix Ca(2+) and is modulated by many effectors including reactive oxygen species, matrix cyclophilin D, Pi (inorganic phosphate), and matrix pH. The recent demonstration that the F-ATP synthase can reversibly undergo a Ca(2+)-dependent transition to form a channel that mediates the permeability transition opens new perspectives to the field. These findings demand a reassessment of the modifications of F-ATP synthase that take place in the heart under pathological conditions and of their potential role in determining the transition of F-ATP synthase from and energy-conserving into an energy-dissipating device.


Subject(s)
Adenosine Triphosphate/metabolism , Calcium/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Animals , Humans , Mitochondria, Heart/physiology , Mitochondrial Membranes/physiology , Mitochondrial Permeability Transition Pore , Myocardium/metabolism , Permeability
19.
J Pharmacol Exp Ther ; 358(3): 431-40, 2016 09.
Article in English | MEDLINE | ID: mdl-27342567

ABSTRACT

Hydrogen sulfide (H2S) is a signaling molecule with protective effects in the cardiovascular system. To harness the therapeutic potential of H2S, a number of donors have been developed. The present study compares the cardioprotective actions of representative H2S donors from different classes and studies their mechanisms of action in myocardial injury in vitro and in vivo. Exposure of cardiomyocytes to H2O2 led to significant cytotoxicity, which was inhibited by sodium sulfide (Na2S), thiovaline (TV), GYY4137 [morpholin-4-ium 4 methoxyphenyl(morpholino) phosphinodithioate], and AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl) triphenylphospho-nium bromide]. Inhibition of nitric oxide (NO) synthesis prevented the cytoprotective effects of Na2S and TV, but not GYY4137 and AP39, against H2O2-induced cardiomyocyte injury. Mice subjected to left anterior descending coronary ligation were protected from ischemia-reperfusion injury by the H2S donors tested. Inhibition of nitric oxide synthase (NOS) in vivo blocked only the beneficial effect of Na2S. Moreover, Na2S, but not AP39, administration enhanced the phosphorylation of endothelial NOS and vasodilator-associated phosphoprotein. Both Na2S and AP39 reduced infarct size in mice lacking cyclophilin-D (CypD), a modulator of the mitochondrial permeability transition pore (PTP). Nevertheless, only AP39 displayed a direct effect on mitochondria by increasing the mitochondrial Ca(2+) retention capacity, which is evidence of decreased propensity to undergo permeability transition. We conclude that although all the H2S donors we tested limited infarct size, the pathways involved were not conserved. Na2S had no direct effects on PTP opening, and its action was nitric oxide dependent. In contrast, the cardioprotection exhibited by AP39 could result from a direct inhibitory effect on PTP acting at a site different than CypD.


Subject(s)
Cardiotonic Agents/pharmacology , Hydrogen Sulfide/metabolism , Nitric Oxide/metabolism , Animals , Cardiotonic Agents/therapeutic use , Cell Line , Humans , Male , Mice , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
20.
Basic Res Cardiol ; 111(6): 70, 2016 11.
Article in English | MEDLINE | ID: mdl-27766474

ABSTRACT

To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research.


Subject(s)
Ischemic Preconditioning, Myocardial , Myocardial Reperfusion Injury , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL