Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Cell Dev Biol ; 11: 1141215, 2023.
Article in English | MEDLINE | ID: mdl-37009485

ABSTRACT

Insights into the effect of the microbiome's composition on immune cell function have recently been discerned and further characterized. Microbiome dysbiosis can result in functional alterations across immune cells, including those required for innate and adaptive immune responses to malignancies and immunotherapy treatment. Dysbiosis can yield changes in or elimination of metabolite secretions, such as short-chain fatty acids (SCFAs), from certain bacterial species that are believed to impact proper immune cell function. Such alterations within the tumor microenvironment (TME) can significantly affect T cell function and survival necessary for eliminating cancerous cells. Understanding these effects is essential to improve the immune system's ability to fight malignancies and the subsequent efficacy of immunotherapies that rely on T cells. In this review, we assess typical T cell response to malignancies, classify the known impact of the microbiome and particular metabolites on T cells, discuss how dysbiosis can affect their function in the TME then further describe the impact of the microbiome on T cell-based immunotherapy treatment, with an emphasis on recent developments in the field. Understanding the impact of dysbiosis on T cell function within the TME can carry substantial implications for the design of immunotherapy treatments and further our understanding of factors that could impact how the immune system combats malignancies.

2.
Front Immunol ; 14: 1085911, 2023.
Article in English | MEDLINE | ID: mdl-37205110

ABSTRACT

Introduction: It has been known for over half a century that mixing an antigen with its cognate antibody in an immune complex (IC) can enhance antigen immunogenicity. However, many ICs produce inconsistent immune responses, and the use of ICs in the development new vaccines has been limited despite the otherwise widespread success of antibody-based therapeutics. To address this problem, we designed a self-binding recombinant immune complex (RIC) vaccine which mimics the larger ICs generated during natural infection. Materials and methods: In this study, we created two novel vaccine candidates: 1) a traditional IC targeting herpes simplex virus 2 (HSV-2) by mixing glycoprotein D (gD) with a neutralizing antibody (gD-IC); and 2) an RIC consisting of gD fused to an immunoglobulin heavy chain and then tagged with its own binding site, allowing self-binding (gD-RIC). We characterized the complex size and immune receptor binding characteristics in vitro for each preparation. Then, the in vivo immunogenicity and virus neutralization of each vaccine were compared in mice. Results: gD-RIC formed larger complexes which enhanced C1q receptor binding 25-fold compared to gD-IC. After immunization of mice, gD-RIC elicited up to 1,000-fold higher gD-specific antibody titers compared to traditional IC, reaching endpoint titers of 1:500,000 after two doses without adjuvant. The RIC construct also elicited stronger virus-specific neutralization against HSV-2, as well as stronger cross-neutralization against HSV-1, although the proportion of neutralizing antibodies to total antibodies was somewhat reduced in the RIC group. Discussion: This work demonstrates that the RIC system overcomes many of the pitfalls of traditional IC, providing potent immune responses against HSV-2 gD. Based on these findings, further improvements to the RIC system are discussed. RIC have now been shown to be capable of inducing potent immune responses to a variety of viral antigens, underscoring their broad potential as a vaccine platform.


Subject(s)
Antibodies, Viral , Antigen-Antibody Complex , Animals , Mice , Viral Envelope Proteins , Herpesvirus 2, Human , Antibodies, Neutralizing , Vaccines, Synthetic
3.
J Vis Exp ; (167)2021 01 16.
Article in English | MEDLINE | ID: mdl-33522504

ABSTRACT

High demand for antibodies as therapeutic interventions for various infectious, metabolic, autoimmune, neoplastic, and other diseases creates a growing need in developing efficient methods for recombinant antibody production. As of 2019, there were more than 70 FDA-approved monoclonal antibodies, and there is exponential growth potential. Despite their promise, limiting factors for widespread use are manufacturing costs and complexity. Potentially, plants offer low-cost, safe, and easily scalable protein manufacturing strategies. Plants like Nicotiana benthamiana not only can correctly fold and assemble complex mammalian proteins but also can add critical post-translational modifications similar to those offered by mammalian cell cultures. In this work, by using native GFP and an acid-stable variant of green fluorescent protein (GFP) fused to human monoclonal antibodies, we were able to visualize the entire transient antibody expression and purification process from N. benthamiana plants. Depending on the experiment's purpose, native GFP fusion can ensure easier visualization during the expression phase in the plants, while acid-stable GFP fusion allows for visualization during downstream processing. This scalable and straightforward procedure can be performed by a single researcher to produce milligram quantities of highly pure antibody or antibody fusion proteins in a matter of days using only a few small plants. Such a technique can be extended to the visualization of any type of antibody purification process and potentially many other proteins, both in plant and other expression systems. Moreover, these techniques can benefit virtual instructions and be executed in a teaching laboratory by undergraduate students possessing minimal prior experience with molecular biology techniques, providing a foundation for project-based exploration with real-world applications.


Subject(s)
Immunoglobulin G/biosynthesis , Nicotiana/genetics , Recombinant Fusion Proteins/biosynthesis , Agrobacterium tumefaciens/metabolism , Animals , Antibodies, Monoclonal/metabolism , Base Sequence , Chromatography , Electrophoresis, Polyacrylamide Gel , Green Fluorescent Proteins/metabolism , Humans , Kanamycin/pharmacology , Plant Leaves/microbiology , Plants, Genetically Modified , Nicotiana/growth & development , Nicotiana/microbiology , Ultraviolet Rays
4.
Article in English | MEDLINE | ID: mdl-32010680

ABSTRACT

Biopharmaceuticals are a large and fast-growing sector of the total pharmaceutical market with antibody-based therapeutics accounting for over 100 billion USD in sales yearly. Mammalian cells are traditionally used for monoclonal antibody production, however plant-based expression systems have significant advantages. In this work, we showcase recent advances made in plant transient expression systems using optimized geminiviral vectors that can efficiently produce heteromultimeric proteins. Two, three, or four fluorescent proteins were coexpressed simultaneously, reaching high yields of 3-5 g/kg leaf fresh weight or ~50% total soluble protein. As a proof-of-concept for this system, various antibodies were produced using the optimized vectors with special focus given to the creation and production of a chimeric broadly neutralizing anti-flavivirus antibody. The variable regions of this murine antibody, 2A10G6, were codon optimized and fused to a human IgG1. Analysis of the chimeric antibody showed that it was efficiently expressed in plants at 1.5 g of antibody/kilogram of leaf tissue, can be purified to near homogeneity by a simple one-step purification process, retains its ability to recognize the Zika virus envelope protein, and potently neutralizes Zika virus. Two other monoclonal antibodies were produced at similar levels (1.2-1.4 g/kg). This technology will be a versatile tool for the production of a wide spectrum of pharmaceutical multi-protein complexes in a fast, powerful, and cost-effective way.

SELECTION OF CITATIONS
SEARCH DETAIL