Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Soft Matter ; 17(3): 655-669, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33215185

ABSTRACT

In this work we study the coupling between ionization and conformational properties of two IDPs, histatin-5 and ß-amyloid 42, in the presence of neutral and charged crowders. The latter is modeled to resemble bovine serum albumin (BSA). With this aim, semi-grand canonical Monte Carlo simulations are performed, so that the IDP charge is a dynamic property, undergoing protonation/deprotonation processes. Both ionization properties (global and specific amino acid charge and binding capacitance) and radius of gyration are analyzed in a large range of pH values and salt concentrations. Without crowder agents, the titration curve of histatin-5, a polycation, is salt-dependent while that of ß-amyloid 42, a polyampholyte, is almost unaffected. The salt concentration is found to be particularly relevant at pH values where the protein binding capacitance (directly linked with charge fluctuation) is larger. Upon addition of neutral crowders, charge regulation is observed in histatin-5, while for ß-amyloid 42 this effect is very small. The main mechanism for charge regulation is found to be the effective increase in the ionic strength due to the excluded volume. In the presence of charged crowders, a significant increase in the charge of both IDPs is observed in almost all the pH range. In this case, the IDP charge is altered not only by the increase in the effective ionic strength but also by its direct electrostatic interaction with the charged crowders.


Subject(s)
Intrinsically Disordered Proteins , Macromolecular Substances , Monte Carlo Method , Protein Conformation , Static Electricity
2.
Phys Chem Chem Phys ; 20(30): 19811-19818, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30033468

ABSTRACT

Adsorption of polyions onto charged surfaces has long been recognized as a crucial phenomenon in biological and technological applications. An intuitive model relating polyelectrolyte adsorption with the imposed features of polarizable surfaces of different compositions and charges is proposed based on Monte Carlo simulations using a coarse-grained approach. The excellent performance of the equation allows simultaneously describing a wide range of adsorption regimes and accounting for specific non-monotonic trends. For a constant surface charge density, the surface composition governs adsorption, promoting variations exceeding 100%. Adsorption increases with the number of attractive charges in the surface until reaching a maximum, decreasing thereafter due to the presence of polyanion-like charged particles. The presence of crowders hampers adsorption. These results can be used to efficiently predict and modulate the interaction between charged macromolecules and different substrates with direct implications in de novo designs of vehicles and biomedical devices.

3.
Biochim Biophys Acta ; 1850(6): 1325-35, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25701646

ABSTRACT

BACKGROUND: The potential use of Fe(III) ions in biomedical applications may predict the interest of its combination with pDNA-PEI polyplexes. The present work aims at assessing the impact of this metal on pDNA complex properties. METHODS: Variations in the formation of complexes were imposed by using two types of biological buffers at different salt conditions. The incorporation of pDNA in complexes was characterised by gel electrophoresis and dynamic light scattering. Transfection efficiency and cytotoxicity were evaluated in HeLa and HUH-7 cell lines, supported by flow cytometry assays. RESULTS: Fe(III) enhances pDNA incorporation in the complex, irrespective of the buffer used. Transfection studies reveal that the addition of Fe(III) to complexes at low ionic strength reduces gene transfection, while those prepared under high salt content do not affect or, in a specific case, increase gene transfection up to 5 times. This increase may be a consequence of a favoured interaction of polyplexes with cell membrane and uptake. At low salt conditions, results attained with chloroquine indicate that the metal may inhibit polyplex endosomal escape. A reduction on the amount of PEI (N/P 5) formed at intermediary ionic strength, complemented by Fe(III), reduces the size of complexes while maintaining a transfection efficiency similar to that obtained to N/P 6. CONCLUSIONS: Fe(III) emerges as a good supporting condensing agent to modulate pDNA-PEI properties, including condensation, size and cytotoxicity, without a large penalty on gene transfection. GENERAL SIGNIFICANCE: This study highlights important aspects that govern pDNA transfection and elucidates the benefits of incorporating the versatile Fe(III) in a gene delivery system.


Subject(s)
Chlorides/metabolism , Ferric Compounds/metabolism , Plasmids/metabolism , Polyethyleneimine/metabolism , Transfection/methods , Adenosine Triphosphate/metabolism , Buffers , Chlorides/chemistry , Chlorides/toxicity , Electrophoretic Mobility Shift Assay , Energy Metabolism/drug effects , Ferric Compounds/chemistry , Ferric Compounds/toxicity , Gene Expression Regulation , Genes, Reporter , HeLa Cells , Humans , Hydrogen-Ion Concentration , Light , Luciferases/genetics , Luciferases/metabolism , Nucleic Acid Conformation , Osmolar Concentration , Plasmids/chemistry , Polyethyleneimine/chemistry , Polyethyleneimine/toxicity , Scattering, Radiation
4.
Biomacromolecules ; 15(2): 478-91, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24460059

ABSTRACT

This work aims to shed light on the mechanism of interaction between components of ternary DNA-PEI-Fe(III) complexes, using experimental and theoretical approaches. In the experimental part, the chelation between PEI-Fe(III) was inspected by potentiometry and electrical conductance measurements and the respective importance for the condensation of DNA analyzed. To this end, three different mixing protocols for the components were imposed using different PEIs, branched (bPEI1.2 and bPEI10) and linear (lPEI2.5 and lPEI25). A delay in DNA condensation was observed when PEI and Fe(III) were premixed and then added to DNA. The set of observations was complemented by determination of the amount of Fe(III) included in the polyplexes, which was found to be dependent on the order of mixture and on the type of PEI used, decreasing with intrinsic PEI condensation efficiency. Overall, a coherent picture in which Fe(III) compensates PEI, probably modulating the respective charge, emerges. Some points arisen from the experimental part were rationalized using Monte Carlo simulations. Different architectured polycation (PC) chains were modeled and an interaction between PC and multivalent ions, mimicking the chelation of Fe(III) by the PEI, was imposed. It was found that chelation enhances polyanion (PA) compaction, irrespective of the PC architecture and charge density. The amount of multivalent ions in each polyplex compensates the negative charge unbalanced by the PC. The charge density and the ability of chelation of each PC dictate the disposition of each condensing agent along the PA backbone, and their coexistence strengthens PA compaction. The deep understanding of these ternary mixtures is a step forward in the optimization of such systems for application in gene delivery.


Subject(s)
DNA/chemistry , Ferric Compounds/chemistry , Polyethyleneimine/chemistry , Monte Carlo Method
5.
Phys Chem Chem Phys ; 16(26): 13112-22, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24867168

ABSTRACT

This study deals with the build-up of biomaterials consisting of biopolymers, namely DNA, and soft particles, poly(amido amine) (PAMAM) dendrimers, and how to model their interactions. We adopted and applied an analytical model to provide further insight into the complexation between DNA (4331 bp) and positively charged PAMAM dendrimers of generations 1, 2, 4, 6 and 8, previously studied experimentally. The theoretical models applied describe the DNA as a semiflexible polyelectrolyte that interacts with dendrimers considered as either hard (impenetrable) spheres or as penetrable and soft spheres. We found that the number of DNA turns around one dendrimer, thus forming a complex, increases with the dendrimer size or generation. The DNA penetration required for the complex to become charge neutral depends on dendrimer generation, where lower generation dendrimers require little penetration to give charge neutral complexes. High generation dendrimers display charge inversion for all considered dendrimer sizes and degrees of penetration. Consistent with the morphologies observed experimentally for dendrimer/DNA aggregates, where highly ordered rods and toroids are found for low generation dendrimers, the DNA wraps less than one turn around the dendrimer. Disordered globular structures appear for high generation dendrimers, where the DNA wraps several turns around the dendrimer. Particularly noteworthy is that the dendrimer generation 4 complexes, where the DNA wraps about one turn around the dendrimers, are borderline cases and can form all types of morphologies. The net-charges of the aggregate have been estimated using zeta potential measurements and are discussed within the theoretical framework.


Subject(s)
DNA/chemistry , DNA/ultrastructure , Dendrimers/chemistry , Models, Chemical , Models, Molecular , Binding Sites , Computer Simulation , Macromolecular Substances/chemistry , Nucleic Acid Conformation , Static Electricity
6.
ACS Omega ; 8(47): 44624-44636, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046290

ABSTRACT

Nucleic acid delivery to cells is an important therapeutic strategy that requires the transport of nucleic acids to intracellular compartments and their protection from enzymatic degradation. This can be achieved through the complexation of the nucleic acids with polycations. Poly(amidoamine) (PAMAM) dendrimers and peptide-conjugated dendrimers have been investigated as delivery vectors. Inspired by these studies and the role of flexible peptide domains in protein-DNA interactions, we studied the impact of conjugating two peptides (tails) to generation 2 (G2) PAMAM dendrimers on DNA condensation and polyplex formation. Using gel electrophoresis, dye exclusion assays, atomic force microscopy, and Monte Carlo simulations, it is shown that the steric impact of neutral peptide tails is to hinder the formation of DNA-G2 polyplexes composed of multiple DNA chains. If the tails are negatively charged, which results in overall neutral G2 conjugates, then the interaction of G2 with DNA is hindered. Increasing the net positive charge of the tails resulted in the complexation capacity of G2 with the DNA being restored. While DNA complexation is obtained for a similar net charge balance for G2 and G2 conjugates with positive tails, fewer of the latter are required to achieve a comparable condensation degree. Furthermore, it is shown that about 40% of the DNA remains accessible to binding by small molecules. Overall, this shows that tuning the net charge of peptide tails conjugated to PAMAM dendrimers offers a handle to control the complexation capacity of DNA, which can be explored as a novel route for optimization as gene delivery vehicles.

7.
Langmuir ; 28(21): 7976-89, 2012 May 29.
Article in English | MEDLINE | ID: mdl-22546152

ABSTRACT

The macroscopic phase behavior and other physicochemical properties of dilute aqueous mixtures of DNA and the cationic surfactant hexadecyltrimethylammounium bromide (CTAB), DNA and the polyamine spermine, or DNA, CTAB, and (2-hydroxypropyl)-ß-cyclodextrin (2HPßCD) were investigated. When DNA is mixed with CTAB we found, with increasing surfactant concentration, (1) free DNA coexisting with surfactant unimers, (2) free DNA coexisting with aggregates of condensed DNA and CTAB, (3) a miscibility gap where macroscopic phase separation is observed, and (4) positively overcharged aggregates of condensed DNA and CTAB. The presence of a clear solution beyond the miscibility gap cannot be ascribed to self-screening by the charges from the DNA and/or the surfactant; instead, hydrophobic interactions among the surfactants are instrumental for the observed behavior. It is difficult to judge whether the overcharged mixed aggregates represent an equilibrium situation or not. If the excess surfactant was not initially present, but added to a preformed precipitate, redissolution was, in consistency with previous reports, not observed; thus, kinetic effects have major influence on the behavior. Mixtures of DNA and spermine also displayed a miscibility gap; however, positively overcharged aggregates were not identified, and redissolution with excess spermine can be explained by electrostatics. When 2HPßCD was added to a DNA-CTAB precipitate, redissolution was observed, and when it was added to the overcharged aggregates, the behavior was essentially a reversal of that of the DNA-CTAB system. This is attributed to an effectively quantitative formation of 1:1 2HPßCD-surfactant inclusion complexes, which results in a gradual decrease in the concentration of effectively available surfactant with increasing 2HPßCD concentration.


Subject(s)
Cetrimonium Compounds/chemistry , Cyclodextrins/chemistry , DNA/chemistry , Spermine/chemistry , Surface-Active Agents/chemistry , Cations/chemistry , Cetrimonium , Circular Dichroism , Light , Scattering, Radiation , Spectrophotometry, Ultraviolet
8.
Biomacromolecules ; 13(10): 3151-61, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-22920592

ABSTRACT

Efficient DNA condensation and decondensation, as well as low toxicity, are required for an efficient gene delivery vehicle. We report on the condensation of DNA by a mixture of cationic agents, low-molecular-weight polyethylenimine (PEI, 1.2 KDa) and Fe(III) ions, and respective decondensation, using experimental and theoretical methods. It was found that a significant reduction in the amount of PEI necessary to induce DNA condensation is achieved by the addition of the trivalent ions, which are very inefficient on their own. In addition, the mixture makes DNA decompaction by heparin easier, starting from similar degrees of condensation. The results obtained using simulations of coarse-grain models are coherent with those obtained experimentally. It was also found that the improved effect of the multivalent ions is related to the preferred positioning of the trivalent ions in the DNA areas less populated by the polycation chains, in between the polycation chains and at the ends of the DNA, which facilitates the overall condensation.


Subject(s)
DNA/chemistry , Ferric Compounds/chemistry , Monte Carlo Method , Animals , Bacteriophage T4 , Cations/chemistry , Male , Models, Molecular , Molecular Dynamics Simulation , Polyethyleneimine/chemistry , Salmon , Testis/chemistry
9.
ACS Appl Bio Mater ; 4(9): 7034-7043, 2021 09 20.
Article in English | MEDLINE | ID: mdl-35006936

ABSTRACT

Four cationic chiral amino acid-based surfactants, cis- and trans-1 and cis- and trans-2, have been studied as DNA-condensing agents with enhanced properties and the absence of cell toxicity. The polar head of the surfactant is made of a cyclobutane ß-amino acid in which the amino group is a hydrochloride salt and the carboxyl group is involved in an amide bond, allowing the link with hydrophobic C12 (surfactant 1) or C16 (surfactant 2) chains. The ability of these surfactants to condense DNA was investigated using a dye exclusion assay, gel electrophoresis, and circular dichroism and compared with the well-studied dodecyltrimethylammonium bromide (DTAB) and cetyltrimethylammonium bromide (CTAB). The surfactant with the longest chain length and the trans stereochemistry (trans-2) was found to be the most efficient in condensing the DNA, including CTAB. Surfactant cis-2 was found to be less efficient, probably due to its poorer solubility. The ß-amino acid surfactants with the shorter chain length behaved similarly, such that the cis/trans stereochemistry does not seem to play a role in this case. Interestingly, these were also found to induce DNA condensation for the same concentration as trans-2 and CTAB but showed a lower binding cooperativity. Therefore, a longer alkyl chain only slightly improved the effectiveness of these surfactants. Further, atomic force microscopy revealed that they compact DNA into small complexes of about 55-110 nm in diameter.


Subject(s)
Amino Acids , Surface-Active Agents , Cetrimonium , Circular Dichroism , DNA/chemistry , Surface-Active Agents/chemistry
10.
Biomacromolecules ; 11(9): 2399-406, 2010 Sep 13.
Article in English | MEDLINE | ID: mdl-20718482

ABSTRACT

This work addresses the impact of pH variation on DNA-polyethylenimine (PEI) complex formation, in aqueous solution and at constant ionic strength. An initial potentiometric characterization of the acid-base behavior of PEI is carried out to measure the concentration of ionized species in the relevant systems. The characterization of the DNA-PEI complexes is performed by precipitation assays, agarose gel electrophoresis, photon correlation spectroscopy, and zeta potential analysis. It is observed that the variations on the electrophoretic mobility, size, and electrical properties of complexes display nonmonotonic, nontrivial trends with pH, if the same polycation/polyanion charge ratios are used for different values of pH. It is seen that both linear charge density and the relative number of chains of the condensing agent are important factors governing the condensation behavior. Complexes prepared at pH 4, for example, indicate strong binding and a large mean size, while those prepared at pH 8 are smaller, in a more uniform population. Finally, charge inversion was observed for all studied pH values (even below charge neutralization).


Subject(s)
DNA/chemistry , DNA/metabolism , Polyethyleneimine/chemistry , Testis/chemistry , Animals , Circular Dichroism , DNA/genetics , Electrophoresis, Agar Gel , Hydrogen-Ion Concentration , Male , Osmolar Concentration , Particle Size , Salmon/genetics
11.
Langmuir ; 25(24): 13770-5, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19681626

ABSTRACT

The interaction between DNA and amino-acid-based surfactants with different linker groups was investigated by gel electrophoresis, ethidium bromide exclusion assays, circular dichroism, and melting temperature determinations. The studies showed that the strength of the interaction between the oligonucleotides and the surfactants is highly dependent on the linker of the surfactant. For ester surfactants, no significant interaction was observed for surfactant-to-DNA charge ratios up to 12. On the other hand, amide surfactants were shown to interact strongly with the oligonucleotides; these surfactants could displace up to 75% of the ethidium bromide molecules bound to the DNA and induced significant changes in the circular dichroism spectra. When comparing the headgroups of the surfactants, it was observed that surfactants with more hydrophobic headgroups (proline vs alanine) interacted more strongly with the DNA, in good agreement with previous studies.


Subject(s)
Oligonucleotides/chemistry , Surface-Active Agents/chemistry , Cross-Linking Reagents/chemistry , DNA/chemistry , Hydrophobic and Hydrophilic Interactions , Nucleic Acid Conformation , Nucleic Acid Denaturation , Static Electricity
12.
Phys Chem Chem Phys ; 11(48): 11568-76, 2009 Dec 28.
Article in English | MEDLINE | ID: mdl-20024429

ABSTRACT

Addition of a cationic surfactant to a solution of DNA causes the formation of compacted DNA-cationic surfactant complexes which precipitate from aqueous solution. It has been shown previously that addition of anionic surfactant will re-dissolve and de-compact the DNA-cationic surfactant complexes and we find that addition of non-ionic surfactants of the alkylpolyoxyethylene type can be used similarly. In principle, these de-compaction and re-dissolution processes could occur either by stripping of the cationic surfactant from the DNA into mixed micelles with the non-ionic surfactant or by solubilisation of the DNA-cationic surfactant complexes within the non-ionic micelles. Solubility phase-boundary measurements, fluorescence microscopy observations of the de-compaction process and light scattering results indicate that de-compaction and re-dissolution occur by the stripping mechanism, even for non-ionic surfactants where the favourable attractive electrostatic interaction between the two surfactants is absent. Using measurements of critical micelle concentrations and calculations based on regular solution mixed micelle theory, we show that re-dissolution and de-compaction of the DNA-cationic surfactant complexes occurs when the concentration of free monomeric cationic surfactant is reduced (by incorporation into mixed micelles) below a critical value.


Subject(s)
DNA/chemistry , Surface-Active Agents/chemistry , Animals , Chemical Precipitation , Light , Microscopy, Fluorescence , Nucleic Acid Conformation , Salmon , Scattering, Radiation , Solubility
13.
Polymers (Basel) ; 11(7)2019 Jun 29.
Article in English | MEDLINE | ID: mdl-31261873

ABSTRACT

Bacterial cells do not have a nuclear membrane that encompasses and isolates the genetic material. In addition, they do not possess histone proteins, which are responsible for the first levels of genome condensation in eukaryotes. Instead, there is a number of more or less specific nucleoid-associated proteins that induce DNA bridging, wrapping and bending. Many of these proteins self-assemble into oligomers. The crowded environment of cells is also believed to contribute to DNA condensation due to excluded volume effects. Ribosomes are protein-RNA complexes found in large concentrations in the cytosol of cells. They are overall negatively charged and some DNA-binding proteins have been reported to also bind to ribosomes. Here the effect of protein self-association on DNA condensation and stability of DNA-protein complexes is explored using Monte Carlo simulations and a simple coarse-grained model. The DNA-binding proteins are described as positively charged dimers with the same linear charge density as the DNA, described using a bead and spring model. The crowding molecules are simply described as hard-spheres with varying charge density. It was found that applying a weak attractive potential between protein dimers leads to their association in the vicinity of the DNA (but not in its absence), which greatly enhances the condensation of the model DNA. The presence of neutral crowding agents does not affect the DNA conformation in the presence or absence of protein dimers. For weakly self-associating proteins, the presence of negatively charged crowding particles induces the dissociation of the DNA-protein complex due to the partition of the proteins between the DNA and the crowders. Protein dimers with stronger association potentials, on the other hand, stabilize the nucleoid, even in the presence of highly charged crowders. The interactions between protein dimers and crowding agents are not completely prevented and a few crowding molecules typically bind to the nucleoid.

14.
Polymers (Basel) ; 11(2)2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30960260

ABSTRACT

Hydrogels are materials used in a variety of applications, ranging from tissue engineering to drug delivery. The incorporation of nanoparticles to yield composite hydrogels has gained substantial momentum over the years since these afford tailor-making and extend material mechanical properties far beyond those achievable through molecular design of the network component. Here, we review different procedures that have been used to integrate nanoparticles into hydrogels; the types of interactions acting between polymers and nanoparticles; and how these underpin the improved mechanical and optical properties of the gels, including the self-healing ability of these composite gels, as well as serving as the basis for future development. In a less explored approach, hydrogels have been used as dispersants of nanomaterials, allowing a larger exposure of the surface of the nanomaterial and thus a better performance in catalytic and sensor applications. Furthermore, the reporting capacity of integrated nanoparticles in hydrogels to assess hydrogel properties, such as equilibrium swelling and elasticity, is highlighted.

15.
Biophys J ; 94(10): 3760-8, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18234818

ABSTRACT

The adsorption of colloids of varying sizes and charges onto a surface that carries both negative and positive charges, representing a membrane, has been investigated using a simple model employing Monte Carlo simulations. The membrane is made of positive and negative charges (headgroups) that are allowed to move along the membrane, simulating the translational diffusion of the lipids, and are also allowed to protrude into the solution, giving rise to a fluid and soft membrane. When an uncharged colloid is placed in the vicinity of the membrane, a short-range repulsion between the colloid and the membrane is observed and the membrane will deflect to avoid coming into contact with the colloid. When the colloid is charged, the membrane response is twofold: the headgroups of the membrane move toward the colloid, as if to partly embrace it, and the positive headgroups of the membrane approach the oppositely charged colloid, inducing the demixing of the membrane lipids (polarization). The presence of protrusions enhances the polarization of the membrane. Potential of mean force calculations show that protrusions give rise to a more long-range attractive colloid-membrane potential which has a smaller magnitude at short separations.


Subject(s)
Colloids/chemistry , Electrochemistry/methods , Membrane Fluidity , Models, Chemical , Models, Molecular , Adsorption , Computer Simulation , Lipid Bilayers , Molecular Conformation , Static Electricity , Surface Properties
16.
J Phys Chem B ; 112(46): 14446-52, 2008 Nov 20.
Article in English | MEDLINE | ID: mdl-18774843

ABSTRACT

The interactions between DNA and a number of different cationic surfactants, differing in headgroup polarity, were investigated by electric conductivity measurements and fluorescence microscopy. It was observed that, the critical association concentration (cac), characterizing the onset of surfactant binding to DNA, does not vary significantly with the architecture of the headgroup. However, comparing with the critical micelle concentration (cmc) in the absence of DNA, it can be inferred that the micelles of a surfactant with a simple quaternary ammonium headgroup are much more stabilized by the presence of DNA than those of surfactants with hydroxylated head-groups. In line with previous studies of polymer-surfactant association, the cac does not vary significantly with either the DNA concentration or its chain length. On the other hand, a novel observation is that the cac is much lower when DNA is denaturated and in the single-stranded conformation, than for the double-helix DNA. This is contrary to expectation for a simple electrostatically driven association. Thus previous studies of polyelectrolyte-surfactant systems have shown that the cac decreases strongly with increasing linear charge density of the polyion. Since double-stranded DNA (dsDNA) has twice as large linear charge density as single-stranded DNA (ssDNA), the stronger binding in the latter case indicates an important role of nonelectrostatic effects. Both a higher flexibility of ssDNA and a higher hydrophobicity due to the exposed bases are found to play a role, with the hydrophobic interaction argued to be more important. The significance of hydrophobic DNA-surfactant interaction is in line with other observations. The significance of nonelectrostatic effects is also indicated in significant differences in cac between different surfactants for ssDNA but not for dsDNA. For lower concentrations of DNA, the conductivity measurements presented an "anomalous" feature, i.e., a second inflection point for surfactant concentrations below the cac; this feature was not displayed at higher concentrations of DNA. The effect is attributed to the presence of a mixture of ss- and dsDNA molecules. Thus the stability of dsDNA is dependent on a certain ion atmosphere; at lower ion concentrations the electrostatic repulsions between the DNA strands become too strong compared to the attractive interactions, and there is a dissociation into the individual strands. Fluorescence microscopy studies, performed at much lower DNA concentrations, demonstrated a transformation of dsDNA from an extended "coil" state to a compact "globule" condition, with a broad concentration region of coexistence of coils and globules. The onset of DNA compaction coincides roughly with the cac values obtained from conductivity measurements. This is in line with the observed independence of cac on the DNA concentration, together with the assumption that the onset of binding corresponds to an initiation of DNA compaction. No major changes in either the onset of compaction or complete compaction were observed as the surfactant headgroup was made more polar.


Subject(s)
Cations/chemistry , DNA/chemistry , Nucleic Acid Conformation , Surface-Active Agents/chemistry , Animals , Cetrimonium , Cetrimonium Compounds/chemistry , Electric Conductivity , Male , Microscopy, Fluorescence , Salmon
17.
Biomacromolecules ; 9(3): 772-5, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18257531

ABSTRACT

In the present work, we show a new approach for decompaction of DNA-cationic surfactant complexes, e.g., lipoplexes, by using beta-cyclodextrin (beta-CD). The DNA decompaction was achieved by dissolving the surfactant aggregates in the complex by making use of the high affinity between the beta-CD and the free surfactant in solution. The results from fluorescence microscopy and adiabatic compressibility measurements indicate that coils and globules do not coexist. The reported procedure using beta-CD is an efficient way to decompact DNA surfactant complexes because the association constant of surfactants with beta-CD is large. The surfactant's interaction with beta-CD is specific and the nonspecific interaction between beta-CD and biological interfaces is small.


Subject(s)
DNA, Superhelical/chemistry , Gene Transfer Techniques , Nucleic Acid Conformation , Surface-Active Agents/chemistry , beta-Cyclodextrins/chemistry , Animals , Bacteriophage T4/genetics , DNA, Superhelical/ultrastructure , DNA, Viral/chemistry , Humans , Methods , Microscopy, Fluorescence
18.
Biomacromolecules ; 9(7): 1852-9, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18517250

ABSTRACT

The interaction between DNA and different types of amino acid-based cationic surfactants was investigated. Particular attention was directed to determine the extent of influence of surfactant head-group geometry toward tuning the interaction behavior of these surfactants with DNA. An overview is obtained by gel retardation assay, isothermal titration calorimetry, fluorescence spectroscopy, and circular dichroism at different mole ratios of surfactant/DNA; also, cell viability was assessed. The studies show that the surfactants with more complex/bulkier hydrophobic head group interact more strongly with DNA but exclude ethidium bromide less efficiently; thus, the accessibility of DNA to small molecules is preserved to a certain extent. The presence of more hydrophobic groups surrounding the positive amino charge also gave rise to a significantly lower cytotoxicity. The surfactant self-assembly pattern is quite different without and with DNA, illustrating the roles of electrostatic and steric effects in determining the effective shape of a surfactant molecule.


Subject(s)
Amino Acids/chemistry , Plasmids/chemistry , Surface-Active Agents/chemistry , Cell Survival/drug effects , Gene Transfer Techniques , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Static Electricity , Structure-Activity Relationship , Surface-Active Agents/chemical synthesis , Surface-Active Agents/pharmacology
19.
J Colloid Interface Sci ; 323(1): 75-83, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18440012

ABSTRACT

Fluorescence microscopy was used to investigate the conformational changes of individual T4 DNA molecules induced by different compacting agents, namely the cationic surfactants, cetyltrimethylammonium bromide (CTAB) and chloride (CTAC), iron(III), lysozyme, and protamine sulfate. A protocol for establishing size estimates is suggested to obtain reproducible results. Observations show that in the presence of lysozyme and protamine sulfate, DNA molecules exhibit a conformational change from an elongated coil structure to compact globules, usually interpreted as a first-order transition. The maximum degree of compaction that is attained when iron(III) or CTAB (CTAC) are used as compacting agents is considerably smaller, and intermediate structures (less elongated coils) are visible even for high concentrations of these agents. Dynamic light scattering experiments were carried out, for some of the systems, to assess the reliability of size estimates from fluorescence microscopy.


Subject(s)
Cations , DNA/chemistry , Bacteriophage T4/metabolism , Cetrimonium , Cetrimonium Compounds/chemistry , Chlorides/chemistry , DNA, Viral/chemistry , Iron/chemistry , Light , Microscopy, Fluorescence/methods , Muramidase/chemistry , Nucleic Acid Conformation , Protamines/chemistry , Protein Conformation , Scattering, Radiation , Surface-Active Agents/chemistry
20.
J Phys Chem B ; 122(44): 10237-10246, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30351110

ABSTRACT

Systems comprised of polyelectrolytes and charged nanoparticles are of great technological interest, being common components in formulations among other uses. The colloidal stability of formulations is an important issue, and thus a lot of effort has been made to study the interactions of individual components in these systems. Here, the complexation and adsorption of an annealed (pH-dependent) polyelectrolyte to two spherical nanoparticles has been studied using coarse-grained Monte Carlo simulations. This has been done mainly by varying the solution pH and separation distance (concentration) between the nanoparticles. The polyelectrolyte charge distribution is seen to vary with nanoparticle separation distance, and its ability to bridge both nanoparticles changes with pH. The flexible polyelectrolyte creates compact, multilink bridges at short nanoparticle separation distances and evolves to a stretched single-link bridge at longer distances, where a larger fraction of the polyelectrolyte wraps around the nanoparticles. The annealed polyelectrolyte is also compared with a quenched polyelectrolyte of similar fixed fractional charge. Here, a difference is found in the adsorption ability at low pH/ionization due to the ability of the annealed polyelectrolytes to concentrate charges in the vicinity of the nanoparticle. At intermediate polyelectrolyte charge fractions and with increasing nanoparticle separation distances, the annealed system is able to link nanoparticles at larger distances as compared to the quenched, in good agreement with experimental observations. The results in this work contribute to the understanding of the effect of annealed polyelectrolytes and pH variations in the phase behavior of polyelectrolyte-nanoparticle systems, potentially aiding in the design and optimization of pH-responsive systems.

SELECTION OF CITATIONS
SEARCH DETAIL