Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Nat Immunol ; 14(12): 1229-36, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24141388

ABSTRACT

Type 2 innate lymphoid cells (ILC2 cells) participate in host defense against helminth parasites and in allergic inflammation. Given their functional relatedness to type 2 helper T cells (T(H)2 cells), we explored whether Gfi1 acts as a shared transcriptional determinant in ILC2 cells. Gfi1 promoted the development of ILC2 cells and controlled their responsiveness during infection with Nippostrongylus brasiliensis and protease allergen-induced lung inflammation. Gfi1 'preferentially' regulated the responsiveness of ILC2 cells to interleukin 33 (IL-33) by directly activating Il1rl1, which encodes the IL-33 receptor (ST2). Loss of Gfi1 in activated ILC2 cells resulted in impaired expression of the transcription factor GATA-3 and a dysregulated genome-wide effector state characterized by coexpression of IL-13 and IL-17. Our findings establish Gfi1 as a shared determinant that reciprocally regulates the type 2 and IL-17 effector states in cells of the innate and adaptive immune systems.


Subject(s)
DNA-Binding Proteins/immunology , Immunity, Innate/immunology , Th2 Cells/immunology , Transcription Factors/immunology , Transcriptome/immunology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Flow Cytometry , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , GATA3 Transcription Factor/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Interleukin-1 Receptor-Like 1 Protein , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-13/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-17/metabolism , Interleukin-33 , Interleukins/pharmacology , Lung/immunology , Lung/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Mice, Inbred Strains , Mice, Knockout , Mice, Transgenic , Nippostrongylus/immunology , Nippostrongylus/physiology , Oligonucleotide Array Sequence Analysis , Receptors, Interleukin/genetics , Receptors, Interleukin/immunology , Receptors, Interleukin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Strongylida Infections/immunology , Strongylida Infections/parasitology , Th2 Cells/metabolism , Th2 Cells/parasitology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics
2.
Antimicrob Agents Chemother ; 68(7): e0042024, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38780261

ABSTRACT

Capsid assembly mediated by hepatitis B virus (HBV) core protein (HBc) is an essential part of the HBV replication cycle, which is the target for different classes of capsid assembly modulators (CAMs). While both CAM-A ("aberrant") and CAM-E ("empty") disrupt nucleocapsid assembly and reduce extracellular HBV DNA, CAM-As can also reduce extracellular HBV surface antigen (HBsAg) by triggering apoptosis of HBV-infected cells in preclinical mouse models. However, there have not been substantial HBsAg declines in chronic hepatitis B (CHB) patients treated with CAM-As to date. To investigate this disconnect, we characterized the antiviral activity of tool CAM compounds in HBV-infected primary human hepatocytes (PHHs), as well as in HBV-infected human liver chimeric mice and mice transduced with adeno-associated virus-HBV. Mechanistic studies in HBV-infected PHH revealed that CAM-A, but not CAM-E, induced a dose-dependent aggregation of HBc in the nucleus which is negatively regulated by the ubiquitin-binding protein p62. We confirmed that CAM-A, but not CAM-E, induced HBc-positive cell death in both mouse models via induction of apoptotic and inflammatory pathways and demonstrated that the degree of HBV-positive cell loss was positively correlated with intrahepatic HBc levels. Importantly, we determined that there is a significantly lower level of HBc per hepatocyte in CHB patient liver biopsies than in either of the HBV mouse models. Taken together, these data confirm that CAM-As have a unique secondary mechanism with the potential to kill HBc-positive hepatocytes. However, this secondary mechanism appears to require higher intrahepatic HBc levels than is typically observed in CHB patients, thereby limiting the therapeutic potential.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Hepatocytes , Humans , Hepatocytes/virology , Hepatocytes/drug effects , Animals , Hepatitis B virus/drug effects , Hepatitis B virus/physiology , Mice , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Viral Core Proteins/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hepatitis B Core Antigens/metabolism , Capsid/metabolism , Capsid/drug effects , Liver/virology , Liver/drug effects , Liver/metabolism , Hepatitis B Surface Antigens/metabolism , Virus Assembly/drug effects , Apoptosis/drug effects , Virus Replication/drug effects
3.
Hepatology ; 77(1): 20-32, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35686937

ABSTRACT

BACKGROUND AND AIMS: Pruritus is associated with multiple liver diseases, particularly those with cholestasis, but the mechanism remains incompletely understood. Our aim was to evaluate serum IL-31 as a putative biomarker of pruritus in clinical trials of an farnesoid X receptor (FXR) agonist, cilofexor, in patients with NASH, primary sclerosing cholangitis (PSC), and primary biliary cholangitis (PBC). APPROACH AND RESULTS: Serum IL-31 was measured in clinical studies of cilofexor in NASH, PSC, and PBC. In patients with PSC or PBC, baseline IL-31 was elevated compared to patients with NASH and healthy volunteers (HVs). IL-31 correlated with serum bile acids among patients with NASH, PBC, and PSC. Baseline IL-31 levels in PSC and PBC were positively correlated with Visual Analog Scale for pruritus and 5-D itch scores. In patients with NASH, cilofexor dose-dependently increased IL-31 from Week (W)1 to W24. In patients with NASH receiving cilofexor 100 mg, IL-31 was higher in those with Grade 2-3 pruritus adverse events (AEs) than those with Grade 0-1 pruritus AEs. IL-31 weakly correlated with C4 at baseline in patients with NASH, and among those receiving cilofexor 100 mg, changes in IL-31 and C4 from baseline to W24 were negatively correlated. IL-31 messenger RNA (mRNA) was elevated in hepatocytes from patients with PSC and NASH compared to HVs. In a humanized liver murine model, obeticholic acid increased IL-31 mRNA expression in human hepatocytes and serum levels of human IL-31. CONCLUSIONS: IL-31 levels correlate with pruritus in patients with cholestatic disease and NASH, with FXR agonist therapy resulting in higher serum levels in the latter group. IL-31 appears to derive in part from increased hepatocyte expression. These findings have therapeutic implications for patients with liver disease and pruritus.


Subject(s)
Cholestasis , Liver Cirrhosis, Biliary , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Cholestasis/complications , Cholestasis/drug therapy , Biomarkers , Metabolic Diseases/complications , Pruritus/drug therapy , Pruritus/etiology , Liver Cirrhosis, Biliary/complications , Liver Cirrhosis, Biliary/drug therapy
4.
Hepatology ; 78(1): 150-166, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36630995

ABSTRACT

BACKGROUND AND AIMS: The progression of chronic liver diseases towards liver cirrhosis is accompanied by drastic tissue changes. This study combines elaborate transcriptomic and histological methods aiming at spatially resolving the hepatic immune microenvironment in NAFLD (including NASH, primary sclerosing cholangitis, primary biliary cholangitis, and severe alcoholic hepatitis). APPROACH AND RESULTS: Human liver samples were subjected to RNA-sequencing (n=225) and imaging cytometry (n=99) across 3 independent patient cohorts. Liver samples from alcoholic hepatitis and primary biliary cholangitis patients were used for comparison. Myeloid populations were further characterized in corresponding mouse models. Imaging, clinical, and phenotypical data were combined for multidimensional analysis. NAFLD/NASH and primary sclerosing cholangitis disease stages were associated with loss of parenchymal areas, increased ductular cell accumulation, and infiltration of immune cells. NASH patients predominantly exhibited myeloid cell accumulation, whereas primary sclerosing cholangitis patients additionally had pronounced lymphoid cell responses. Correlating to disease stage, both etiologies displayed intense IBA1 + CD16 low CD163 low macrophage aggregation in nonparenchymal areas, with a distinct spatial proximity to ductular cells. Mouse models revealed that disease-associated IBA1 + hepatic macrophages originated from bone marrow-derived monocytes. Using an unbiased, machine learning-based algorithm, IBA1 in combination with hepatocyte and ductular cell immunostaining-predicted advanced cirrhosis in human NASH, primary sclerosing cholangitis, and alcoholic hepatitis. CONCLUSIONS: Loss of hepatocytes and increased ductular reaction are tightly associated with monocyte-derived macrophage accumulation and represent the most prominent common immunological feature revealing the progression of NAFLD, primary sclerosing cholangitis, primary biliary cholangitis, and alcoholic hepatitis, suggesting IBA1 + CD163 low macrophages are key pathogenic drivers of human liver disease progression across diverse etiologies.


Subject(s)
Cholangitis, Sclerosing , Hepatitis, Alcoholic , Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/pathology , Cholangitis, Sclerosing/pathology , Hepatitis, Alcoholic/pathology , Liver/pathology , Liver Cirrhosis/complications , Macrophages , Disease Models, Animal
5.
Histopathology ; 84(5): 863-876, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38196202

ABSTRACT

AIMS: Treatment options for advanced urothelial carcinoma (aUC) rapidly evolved: besides immunomodulative therapeutic options and inhibitors targeting Fibroblast growth factor receptor (FGFR) alterations, two new antibody-drug conjugates (ADC), sacituzumab govitecan (SG) and enfortumab vedotin (EV), have been approved. However, little is known about the associations of specific aUC properties and the surface target expression of TROP2 and NECTIN-4. Our aim was to characterize associations of TACSTD2/TROP2 and NECTIN-4/NECTIN-4 protein and gene expression with morphomolecular and clinicopathological characteristics of aUC in two large independent cohorts. METHODS AND RESULTS: The TCGA BLCA (n = 405) and the CCC-EMN (n = 247) cohorts were retrospectively analysed. TROP2/TACSTD2 and NECTIN-4/NECTIN-4 are highly expressed at the protein and transcript level in aUC, and their expression status did not correlate with patient survival in both cohorts. NECTIN-4/NECTIN-4 expression was higher in luminal tumours and reduced in squamous aUCs. NECTIN-4 was negative in 10.6% of samples, and 18.4% of samples had low expression (H-score <15). The TROP2 negativity rate amounted to 6.5%. TACSTD2 and NECTIN-4 expression was reduced in neuroendocrine-like and/or protein-based double-negative tumours. TROP2- and NECTIN-4-negative tumours included one sarcomatoid and four neuroendocrine aUC. FGFR3 alterations and PD-L1 expression on tumour and immune cells did not associate with TROP2 or NECTIN-4 expression. CONCLUSIONS: TACSTD2/TROP2 and NECTIN-4/NECTIN-4 are widely expressed in aUC, independent of FGFR3 alterations or PD-L1 expression, thus representing a suitable target for ADC treatment in the majority of aUC. The expression loss was associated with aggressive morphomolecular aUC subtypes, i.e. neuroendocrine(-like) and sarcomatoid aUC.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Nectins/genetics , B7-H1 Antigen , Retrospective Studies , Cell Adhesion Molecules/metabolism , Antigens, Neoplasm/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics
6.
Immunity ; 42(2): 321-331, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25680273

ABSTRACT

T helper 1 (Th1) cell-associated immunity exacerbates ileitis induced by oral Toxoplasma gondii infection. We show here that attenuated ileitis observed in interleukin-22 (IL-22)-deficient mice was associated with reduced production of Th1-cell-promoting IL-18. IL-22 not only augmented the expression of Il18 mRNA and inactive precursor protein (proIL-18) in intestinal epithelial cells after T. gondii or Citrobacter rodentium infection, but also maintained the homeostatic amount of proIL-18 in the ileum. IL-22, however, did not induce the processing to active IL-18, suggesting a two-step regulation of IL-18 in these cells. Although IL-18 exerted pathogenic functions during ileitis triggered by T. gondii, it was required for host defense against C. rodentium. Conversely, IL-18 was required for the expression of IL-22 in innate lymphoid cells (ILCs) upon T. gondii infection. Our results define IL-18 as an IL-22 target gene in epithelial cells and describe a complex mutual regulation of both cytokines during intestinal infection.


Subject(s)
Enterobacteriaceae Infections/immunology , Interleukin-18/immunology , Interleukins/immunology , Intestinal Mucosa/immunology , Toxoplasmosis/immunology , Animals , Cells, Cultured , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/microbiology , Epithelial Cells/immunology , Ileitis/immunology , Ileitis/microbiology , Ileitis/parasitology , Ileum/immunology , Ileum/microbiology , Ileum/parasitology , Inflammation/immunology , Interferon-gamma/biosynthesis , Interleukin-18/biosynthesis , Interleukins/genetics , Intestinal Mucosa/microbiology , Intestinal Mucosa/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/immunology , Neutrophils/immunology , Organ Culture Techniques , RNA, Messenger/biosynthesis , Th1 Cells/immunology , Toxoplasma/immunology , Toxoplasmosis/parasitology , Up-Regulation , Interleukin-22
7.
Nat Immunol ; 12(10): 941-8, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21874025

ABSTRACT

Colonic patches (CLPs) and isolated lymphoid follicles (ILFs) are two main lymphoid structures in the colon. Lymphoid tissue-inducer cells (LTi cells) are indispensable for the development of ILFs. LTi cells also produce interleukin 17 (IL-17) and IL-22, signature cytokines secreted by IL-17-producing helper T cells. Here we report that IL-22 acted downstream of the lymphotoxin pathway and regulated the organization and maintenance of mature CLPs and ILFs in the colon during infection with Citrobacter rodentium. Lymphotoxin (LTα(1)ß(2)) regulated the production of IL-22 during infection with C. rodentium, but the lymphotoxin-like protein LIGHT did not. IL-22 signaling was sufficient to restore the organization of CLPs and ILFs and host defense against infection with C. rodentium in mice lacking lymphotoxin signals, which suggests that IL-22 connects the lymphotoxin pathway to mucosal epithelial defense mechanisms.


Subject(s)
Citrobacter rodentium , Colon/immunology , Enterobacteriaceae Infections/immunology , Interleukins/physiology , Lymphoid Tissue/physiology , Lymphotoxin-alpha/physiology , Animals , Colon/microbiology , Interleukin-23/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Interleukin-22
8.
Nat Immunol ; 12(12): 1159-66, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21993848

ABSTRACT

Interleukin 17C (IL-17C) is a member of the IL-17 family that is selectively induced in epithelia by bacterial challenge and inflammatory stimuli. Here we show that IL-17C functioned in a unique autocrine manner, binding to a receptor complex consisting of the receptors IL-17RA and IL-17RE, which was preferentially expressed on tissue epithelial cells. IL-17C stimulated epithelial inflammatory responses, including the expression of proinflammatory cytokines, chemokines and antimicrobial peptides, which were similar to those induced by IL-17A and IL-17F. However, IL-17C was produced by distinct cellular sources, such as epithelial cells, in contrast to IL-17A, which was produced mainly by leukocytes, especially those of the T(H)17 subset of helper T cells. Whereas IL-17C promoted inflammation in an imiquimod-induced skin-inflammation model, it exerted protective functions in dextran sodium sulfate-induced colitis. Thus, IL-17C is an essential autocrine cytokine that regulates innate epithelial immune responses.


Subject(s)
Autocrine Communication , Epithelial Cells/immunology , Immunity, Innate/immunology , Interleukin-17/metabolism , Animals , Cell Line , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Epithelial Cells/metabolism , Gene Expression Profiling , HEK293 Cells , Humans , Inflammation/immunology , Inflammation/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Leukocytes/immunology , Leukocytes/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Protein Binding , Receptors, Interleukin-17/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Mucosa/microbiology , Signal Transduction , Skin/immunology , Skin/metabolism , Skin/pathology
9.
J Hepatol ; 77(2): 332-343, 2022 08.
Article in English | MEDLINE | ID: mdl-35218813

ABSTRACT

BACKGROUND & AIMS: Chronic HBV is clinically categorized into 4 phases by a combination of serum HBV DNA levels, HBeAg status and alanine aminotransferase (ALT): immunotolerant (IT), immune-active (IA), inactive carrier (IC) and HBeAg-negative hepatitis (ENEG). Immune and virological measurements in the blood have proven useful but are insufficient to explain the interrelation between the immune system and the virus since immune dynamics differ in the blood and liver. Furthermore, the inflammatory response in the liver and parenchymal cells cannot be fully captured in blood. METHODS: Immunological composition and transcriptional profiles of core needle liver-biopsies in chronic HBV phases were compared to those of healthy controls by multiplex immunofluorescence and RNA-sequencing (n = 37 and 78, respectively) analyses. RESULTS: Irrespective of the phase-specific serological profiles, increased immune-gene expression and frequency was observed in chronic HBV compared to healthy livers. Greater transcriptomic deregulation was seen in IA and ENEG (172 vs. 243 DEGs) than in IT and IC (13 vs. 35 DEGs) livers. Interferon-stimulated genes, immune-activation and exhaustion genes (ICOS, CTLA4, PDCD1) together with chemokine genes (CXCL10, CXCL9) were significantly induced in IA and ENEG livers. Moreover, distinct immune profiles associated with ALT elevation and a more accentuated immune-exhaustion profile (CTLA4, TOX, SLAMF6, FOXP3) were observed in ENEG, which set it apart from the IA phase (LGALS9, PDCD1). Interestingly, all HBV phases showed downregulation of metabolic pathways vs. healthy livers (fatty and bile acid metabolism). Finally, increased leukocyte infiltrate correlated with serum ALT, but not with HBV DNA or viral proteins. CONCLUSION: Our comprehensive multi-parametric analysis of human livers revealed distinct inflammatory profiles and pronounced differences in intrahepatic gene profiles across all chronic HBV phases in comparison to healthy liver. LAY SUMMARY: Immunological studies on chronic HBV remain largely restricted to assessment of peripheral responses due to the limited access to the site of infection, the liver. In this study, we comprehensively analyzed livers from a well-defined cohort of patients with chronic HBV and uninfected controls with state-of-the-art techniques, and evaluated the differences in gene expression profiles and inflammation characteristics across distinct disease phases in patients with chronic HBV.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , CTLA-4 Antigen , DNA, Viral/genetics , Hepatitis B e Antigens , Hepatitis B virus/genetics , Humans , Inflammation/genetics
10.
Nature ; 518(7539): 417-21, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25470037

ABSTRACT

T-helper type 17 (TH17) cells that produce the cytokines interleukin-17A (IL-17A) and IL-17F are implicated in the pathogenesis of several autoimmune diseases. The differentiation of TH17 cells is regulated by transcription factors such as RORγt, but post-translational mechanisms preventing the rampant production of pro-inflammatory IL-17A have received less attention. Here we show that the deubiquitylating enzyme DUBA is a negative regulator of IL-17A production in T cells. Mice with DUBA-deficient T cells developed exacerbated inflammation in the small intestine after challenge with anti-CD3 antibodies. DUBA interacted with the ubiquitin ligase UBR5, which suppressed DUBA abundance in naive T cells. DUBA accumulated in activated T cells and stabilized UBR5, which then ubiquitylated RORγt in response to TGF-ß signalling. Our data identify DUBA as a cell-intrinsic suppressor of IL-17 production.


Subject(s)
Interleukin-17/biosynthesis , Protein Biosynthesis , Th17 Cells/metabolism , Ubiquitin-Specific Proteases/metabolism , Animals , Enzyme Stability , Female , Inflammation/genetics , Inflammation/pathology , Intestine, Small/metabolism , Intestine, Small/pathology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Signal Transduction , Substrate Specificity , Transforming Growth Factor beta/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Specific Proteases/biosynthesis , Ubiquitin-Specific Proteases/deficiency , Ubiquitin-Specific Proteases/genetics , Ubiquitination
11.
Nature ; 506(7489): 456-62, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24553140

ABSTRACT

Crohn's disease is a debilitating inflammatory bowel disease (IBD) that can involve the entire digestive tract. A single-nucleotide polymorphism (SNP) encoding a missense variant in the autophagy gene ATG16L1 (rs2241880, Thr300Ala) is strongly associated with the incidence of Crohn's disease. Numerous studies have demonstrated the effect of ATG16L1 deletion or deficiency; however, the molecular consequences of the Thr300Ala (T300A) variant remains unknown. Here we show that amino acids 296-299 constitute a caspase cleavage motif in ATG16L1 and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. We observed that death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased degradation of the T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy. Knock-in mice harbouring the T316A variant showed defective clearance of the ileal pathogen Yersinia enterocolitica and an elevated inflammatory cytokine response. In turn, deletion of the caspase-3-encoding gene, Casp3, or elimination of the caspase cleavage site by site-directed mutagenesis rescued starvation-induced autophagy and pathogen clearance, respectively. These findings demonstrate that caspase 3 activation in the presence of a common risk allele leads to accelerated degradation of ATG16L1, placing cellular stress, apoptotic stimuli and impaired autophagy in a unified pathway that predisposes to Crohn's disease.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Caspase 3/metabolism , Crohn Disease/genetics , Polymorphism, Single Nucleotide/genetics , Proteolysis , Amino Acid Motifs , Animals , Autophagy/genetics , Autophagy-Related Proteins , Carrier Proteins/chemistry , Caspase 3/deficiency , Caspase 3/genetics , Cell Line , Cells, Cultured , Crohn Disease/pathology , Cytokines/immunology , Enzyme Activation , Female , Food Deprivation , Humans , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Stress, Physiological , Yersinia enterocolitica/immunology
12.
Nature ; 514(7521): 237-41, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25119041

ABSTRACT

The connection between an altered gut microbiota and metabolic disorders such as obesity, diabetes, and cardiovascular disease is well established. Defects in preserving the integrity of the mucosal barriers can result in systemic endotoxaemia that contributes to chronic low-grade inflammation, which further promotes the development of metabolic syndrome. Interleukin (IL)-22 exerts essential roles in eliciting antimicrobial immunity and maintaining mucosal barrier integrity within the intestine. Here we investigate the connection between IL-22 and metabolic disorders. We find that the induction of IL-22 from innate lymphoid cells and CD4(+) T cells is impaired in obese mice under various immune challenges, especially in the colon during infection with Citrobacter rodentium. While innate lymphoid cell populations are largely intact in obese mice, the upregulation of IL-23, a cytokine upstream of IL-22, is compromised during the infection. Consequently, these mice are susceptible to C. rodentium infection, and both exogenous IL-22 and IL-23 are able to restore the mucosal host defence. Importantly, we further unveil unexpected functions of IL-22 in regulating metabolism. Mice deficient in IL-22 receptor and fed with high-fat diet are prone to developing metabolic disorders. Strikingly, administration of exogenous IL-22 in genetically obese leptin-receptor-deficient (db/db) mice and mice fed with high-fat diet reverses many of the metabolic symptoms, including hyperglycaemia and insulin resistance. IL-22 shows diverse metabolic benefits, as it improves insulin sensitivity, preserves gut mucosal barrier and endocrine functions, decreases endotoxaemia and chronic inflammation, and regulates lipid metabolism in liver and adipose tissues. In summary, we identify the IL-22 pathway as a novel target for therapeutic intervention in metabolic diseases.


Subject(s)
Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Immunity, Mucosal , Interleukins/immunology , Interleukins/metabolism , Metabolic Diseases/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chronic Disease , Citrobacter rodentium/drug effects , Citrobacter rodentium/immunology , Citrobacter rodentium/physiology , Colon/drug effects , Colon/immunology , Colon/microbiology , Diabetes Mellitus/pathology , Diet, High-Fat , Female , Hyperglycemia/diet therapy , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Immunity, Mucosal/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Insulin/metabolism , Insulin Resistance , Interleukin-23/immunology , Interleukin-23/metabolism , Interleukin-23/pharmacology , Interleukins/pharmacology , Interleukins/therapeutic use , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Metabolic Diseases/diet therapy , Metabolic Diseases/drug therapy , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Receptors, Interleukin/deficiency , Receptors, Interleukin/metabolism , Receptors, Leptin/deficiency , Receptors, Leptin/metabolism , Interleukin-22
14.
Gastroenterology ; 150(2): 477-87.e9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26522261

ABSTRACT

BACKGROUND & AIMS: Etrolizumab is a humanized monoclonal antibody against the ß7 integrin subunit that has shown efficacy vs placebo in patients with moderate to severely active ulcerative colitis (UC). Patients with colon tissues that expressed high levels of the integrin αE gene (ITGAE) appeared to have the best response. We compared differences in colonic expression of ITGAE and other genes between patients who achieved clinical remission with etrolizumab vs those who did. METHODS: We performed a retrospective analysis of data collected from 110 patients with UC who participated in a phase 2 placebo-controlled trial of etrolizumab, as well as from 21 patients with UC or without inflammatory bowel disease (controls) enrolled in an observational study at a separate site. Colon biopsies were collected from patients in both studies and analyzed by immunohistochemistry and gene expression profiling. Mononuclear cells were isolated and analyzed by flow cytometry. We identified biomarkers associated with response to etrolizumab. In the placebo-controlled trial, clinical remission was defined as total Mayo Clinic Score ≤2, with no individual subscore >1, and mucosal healing was defined as endoscopic score ≤1. RESULTS: Colon tissues collected at baseline from patients who had a clinical response to etrolizumab expressed higher levels of T-cell-associated genes than patients who did not respond (P < .05). Colonic CD4(+) integrin αE(+) cells from patients with UC expressed higher levels of granzyme A messenger RNA (GZMA mRNA) than CD4(+) αE(-) cells (P < .0001); granzyme A and integrin αE protein were detected in the same cells. Of patients receiving 100 mg etrolizumab, a higher proportion of those with high levels of GZMA mRNA (41%) or ITGAE mRNA (38%) than those with low levels of GZMA (6%) or ITGAE mRNA (13%) achieved clinical remission (P < .05) and mucosal healing (41% GZMA(high) vs 19% GZMA(low) and 44% ITGAE(high) vs 19% ITGAE(low)). Compared with ITGAE(low) and GZMA(low) patients, patients with ITGAE(high) and GZMA(high) had higher baseline numbers of epithelial crypt-associated integrin αE(+) cells (P < .01 for both), but a smaller number of crypt-associated integrin αE(+) cells after etrolizumab treatment (P < .05 for both). After 10 weeks of etrolizumab treatment, expression of genes associated with T-cell activation and genes encoding inflammatory cytokines decreased by 40%-80% from baseline (P < .05) in patients with colon tissues expressing high levels of GZMA at baseline. CONCLUSIONS: Levels of GZMA and ITGAE mRNAs in colon tissues can identify patients with UC who are most likely to benefit from etrolizumab; expression levels decrease with etrolizumab administration in biomarker(high) patients. Larger, prospective studies of markers are needed to assess their clinical value.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, CD/metabolism , Colitis, Ulcerative/drug therapy , Colon/drug effects , Gastrointestinal Agents/therapeutic use , Granzymes/metabolism , Integrin alpha Chains/metabolism , Antigens, CD/genetics , Biopsy , Clinical Trials, Phase II as Topic , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/enzymology , Colitis, Ulcerative/genetics , Colon/enzymology , Colon/pathology , Gene Expression Profiling/methods , Granzymes/genetics , Humans , Immunohistochemistry , Integrin alpha Chains/genetics , Predictive Value of Tests , RNA, Messenger/metabolism , Randomized Controlled Trials as Topic , Remission Induction , Retrospective Studies , Time Factors , Treatment Outcome , Wound Healing/drug effects
15.
Proc Natl Acad Sci U S A ; 111(38): 13942-7, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25201978

ABSTRACT

Mammalian hosts are colonized with commensal microbes in various mucosal and epithelial tissues, including the intestinal tract. In mice, the presence of segmented filamentous bacteria (SFB) promotes Th17 differentiation and the development of autoimmune disease. Here, we demonstrate that the IL-23 pathway dynamically regulates the abundance of SFB as well as mucosal barrier function in the adult animal. Genetic or pharmacological inactivation of the pathway selectively perturbs the abundance of a small group of commensals, including SFB, and results in an impaired mucosal barrier. Defective barrier function leads to systemic dissemination of microbial products, provoking induction of the IL-23 pathway with dual consequences: IL-23 drives IL-22 production to reinforce mucosal barrier function and elicit antimicrobial activities, and it also drives the differentiation of Th17 cells in an attempt to combat escaped microbes in the lamina propria and in distal tissues. Thus, barrier defects generate a systemic environment that facilitates Th17 development.


Subject(s)
Interleukins/immunology , Intestinal Mucosa/immunology , Microbiota/immunology , Receptors, Interleukin/immunology , Th17 Cells/immunology , Animals , Cell Differentiation/immunology , Interleukins/genetics , Intestinal Mucosa/microbiology , Mice , Mice, Knockout , Receptors, Interleukin/genetics , Interleukin-22
16.
Lancet ; 384(9940): 309-18, 2014 Jul 26.
Article in English | MEDLINE | ID: mdl-24814090

ABSTRACT

BACKGROUND: Etrolizumab is a humanised monoclonal antibody that selectively binds the ß7 subunit of the heterodimeric integrins α4ß7 and αEß7. We aimed to assess etrolizumab in patients with moderately-to-severely active ulcerative colitis. METHODS: In this double-blind, placebo-controlled, randomised, phase 2 study, patients with moderately-to-severely active ulcerative colitis who had not responded to conventional therapy were recruited from 40 referral centres in 11 countries. Eligible patients (aged 18-75 years; Mayo Clinic Score [MCS] of 5 of higher [or ≥6 in USA]; and disease extending 25 cm or more from anal verge) were randomised (1:1:1) to one of two dose levels of subcutaneous etrolizumab (100 mg at weeks 0, 4, and 8, with placebo at week 2; or 420 mg loading dose [LD] at week 0 followed by 300 mg at weeks 2, 4, and 8), or matching placebo. The primary endpoint was clinical remission at week 10, defined as MCS of 2 or less (with no individual subscore of >1), analysed in the modified intention-to-treat population (mITT; all randomly assigned patients who had received at least one dose of study drug, had at least one post-baseline disease-activity assessment, and had a centrally read screening endoscopic subscore of ≥2). This study is registered with ClinicalTrials.gov, number NCT01336465. FINDINGS: Between Sept 2, 2011, and July 11, 2012, 124 patients were randomly assigned, of whom five had a endoscopic subscore of 0 or 1 and were excluded from the mITT population, leaving 39 patients in the etrolizumab 100 mg group, 39 in the etrolizumab 300 mg plus LD group, and 41 in the placebo group for the primary analyses. No patients in the placebo group had clinical remission at week 10, compared with eight (21% [95% CI 7-36]) patients in the etrolizumab 100 mg group (p=0·0040) and four (10% [0·2-24]) patients in the 300 mg plus LD group (p=0·048). Adverse events occurred in 25 (61%) of 41 patients in the etrolizumab 100 mg group (five [12%] of which were regarded as serious), 19 (48%) of 40 patients in the etrolizumab 300 mg plus LD group (two [5%] serious), and 31 (72%) of 43 patients in the placebo group (five [12%] serious). INTERPRETATION: Etrolizumab was more likely to lead to clinical remission at week 10 than was placebo. Therefore, blockade of both α4ß7 and αEß7 might provide a unique therapeutic approach for the treatment of ulcerative colitis, and phase 3 studies have been planned. FUNDING: Genentech.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Colitis, Ulcerative/drug therapy , Adult , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Double-Blind Method , Female , Humans , Male , Remission Induction/methods , Time Factors , Treatment Outcome
17.
J Pathol ; 232(2): 112-20, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24122796

ABSTRACT

Dysfunction of the mucosal immune system plays an important role in inflammatory bowel disease (IBD) pathogenesis. Dendritic cells are emerging as central players based on both our increasing understanding of how genetic susceptibility impacts the mucosal immune system and the key role of dendritic cells in regulating response to gut microflora. We discuss areas of therapeutic opportunity in this evolving landscape.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Colitis, Ulcerative/drug therapy , Crohn Disease/drug therapy , Dendritic Cells/drug effects , Drug Discovery , Gastrointestinal Agents/therapeutic use , Immunity, Mucosal/drug effects , Intestines/drug effects , Animals , Colitis, Ulcerative/genetics , Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Crohn Disease/genetics , Crohn Disease/immunology , Crohn Disease/microbiology , Crohn Disease/pathology , Dendritic Cells/immunology , Humans , Intestines/immunology , Intestines/microbiology , Intestines/pathology , Mice , Molecular Targeted Therapy
18.
Toxicol Pathol ; 42(1): 99-110, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24231829

ABSTRACT

Animal models of human disease are a critical tool in both basic research and drug development. The results of preclinical efficacy studies often inform progression of therapeutic candidates through the drug development pipeline; however, the extent to which results in inflammatory bowel disease (IBD) models predict human drug response is an ongoing concern. This review discusses how murine models are currently being used in IBD research. We focus on the considerations and caveats for commonly used models in preclinical efficacy studies and discuss the value of models that utilize specific pathogenic pathways of interest rather than model all aspects of human disease.


Subject(s)
Disease Models, Animal , Inflammatory Bowel Diseases/therapy , Animals , Humans , Inflammatory Bowel Diseases/physiopathology , Mice , Research Design
19.
Dev Biol ; 363(2): 413-25, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22280990

ABSTRACT

Joint and skeletal development is highly regulated by extracellular matrix (ECM) proteoglycans, of which chondroitin sulfate proteoglycans (CSPGs) are a major class. Despite the requirement of joint CSPGs for skeletal flexibility and structure, relatively little is understood regarding their role in establishing joint positioning or in modulating signaling and cell behavior during joint formation. Chondroitin sulfate synthase 1 (Chsy1) is one of a family of enzymes that catalyze the extension of chondroitin and dermatan sulfate glycosaminoglycans. Recently, human syndromic brachydactylies have been described to have loss-of-function mutations at the CHSY1 locus. In concordance with these observations, we demonstrate that mice lacking Chsy1, though viable, display chondrodysplasia and decreased bone density. Notably, Chsy1(-/-) mice show a profound limb patterning defect in which orthogonally shifted ectopic joints form in the distal digits. Associated with the digit-patterning defect is a shift in cell orientation and an imbalance in chondroitin sulfation. Our results place Chsy1 as an essential regulator of joint patterning and provide a mouse model of human brachydactylies caused by mutations in CHSY1.


Subject(s)
Body Patterning , Bone Development , Bone and Bones/enzymology , Brachydactyly/genetics , Glycosyltransferases/metabolism , Joints/embryology , Animals , Bone Density , Disease Models, Animal , Female , Gene Deletion , Glucuronosyltransferase , Glycosyltransferases/genetics , Humans , Mice , Multifunctional Enzymes , N-Acetylgalactosaminyltransferases , Pregnancy
20.
J Exp Med ; 204(6): 1319-25, 2007 Jun 11.
Article in English | MEDLINE | ID: mdl-17548523

ABSTRACT

Complement is an important component of the innate and adaptive immune response, yet complement split products generated through activation of each of the three complement pathways (classical, alternative, and lectin) can cause inflammation and tissue destruction. Previous studies have shown that complement activation through the alternative, but not classical, pathway is required to initiate antibody-induced arthritis in mice, but it is unclear if the alternative pathway (AP) plays a role in established disease. Previously, we have shown that human complement receptor of the immunoglobulin superfamily (CRIg) is a selective inhibitor of the AP of complement. Here, we present the crystal structure of murine CRIg and, using mutants, provide evidence that the structural requirements for inhibition of the AP are conserved in human and mouse. A soluble form of CRIg reversed inflammation and bone loss in two experimental models of arthritis by inhibiting the AP of complement in the joint. Our data indicate that the AP of complement is not only required for disease induction, but also disease progression. The extracellular domain of CRIg thus provides a novel tool to study the effects of inhibiting the AP of complement in established disease and constitutes a promising therapeutic with selectivity for a single complement pathway.


Subject(s)
Arthritis, Experimental/drug therapy , Bone Resorption/drug therapy , Models, Molecular , Receptors, Complement/genetics , Animals , Arthritis, Experimental/complications , Bone Resorption/etiology , Complement Inactivating Agents , Crystallization , Enzyme-Linked Immunosorbent Assay , Humans , Immunohistochemistry , Mice , Receptors, Complement/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL