Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters

Publication year range
1.
Cell ; 185(11): 1842-1859.e18, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35561686

ABSTRACT

The precise genetic origins of the first Neolithic farming populations in Europe and Southwest Asia, as well as the processes and the timing of their differentiation, remain largely unknown. Demogenomic modeling of high-quality ancient genomes reveals that the early farmers of Anatolia and Europe emerged from a multiphase mixing of a Southwest Asian population with a strongly bottlenecked western hunter-gatherer population after the last glacial maximum. Moreover, the ancestors of the first farmers of Europe and Anatolia went through a period of extreme genetic drift during their westward range expansion, contributing highly to their genetic distinctiveness. This modeling elucidates the demographic processes at the root of the Neolithic transition and leads to a spatial interpretation of the population history of Southwest Asia and Europe during the late Pleistocene and early Holocene.


Subject(s)
Farmers , Genome , Agriculture , DNA, Mitochondrial/genetics , Europe , Genetic Drift , Genomics , History, Ancient , Human Migration , Humans
2.
Nature ; 608(7922): 336-345, 2022 08.
Article in English | MEDLINE | ID: mdl-35896751

ABSTRACT

In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.


Subject(s)
Archaeology , Dairying , Disease , Genetics, Population , Lactase , Milk , Selection, Genetic , Animals , Animals, Wild , Biological Specimen Banks , Ceramics/history , Cohort Studies , Dairying/history , Europe/epidemiology , Europe/ethnology , Famine/statistics & numerical data , Gene Frequency , Genotype , History, Ancient , Humans , Lactase/genetics , Milk/metabolism , United Kingdom
3.
Proc Natl Acad Sci U S A ; 120(36): e2303574120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37603728

ABSTRACT

Our understanding of prehistoric societal organization at the family level is still limited. Here, we generated genome data from 32 individuals from an approximately 3,800-y-old burial mound attributed to the Bronze Age Srubnaya-Alakul cultural tradition at the site of Nepluyevsky, located in the Southern Ural region of Central Eurasia. We found that life expectancy was generally very low, with adult males living on average 8 y longer than females. A total of 35 first-degree, 40 second-degree, and 48 third-degree biological relationships connected 23 of the studied individuals, allowing us to propose a family tree spanning three generations with six brothers at its center. The oldest of these brothers had eight children with two women and the most children overall, whereas the other relationships were monogamous. Notably, related female children above the age of five were completely absent from the site, and adult females were more genetically diverse than males. These results suggest that biological relationships between male siblings played a structural role in society and that descent group membership was based on patrilineality. Women originated from a larger mating network and moved to join the men, with whom they were buried. Finally, the oldest brother likely held a higher social position, which was expressed in terms of fertility.


Subject(s)
Burial , Marriage , Adult , Male , Child , Humans , Female , Cell Communication , Fertility , Life Expectancy
4.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36790822

ABSTRACT

Genomic regions under positive selection harbor variation linked for example to adaptation. Most tools for detecting positively selected variants have computational resource requirements rendering them impractical on population genomic datasets with hundreds of thousands of individuals or more. We have developed and implemented an efficient haplotype-based approach able to scan large datasets and accurately detect positive selection. We achieve this by combining a pattern matching approach based on the positional Burrows-Wheeler transform with model-based inference which only requires the evaluation of closed-form expressions. We evaluate our approach with simulations, and find it to be both sensitive and specific. The computational resource requirements quantified using UK Biobank data indicate that our implementation is scalable to population genomic datasets with millions of individuals. Our approach may serve as an algorithmic blueprint for the era of "big data" genomics: a combinatorial core coupled with statistical inference in closed form.


Subject(s)
Genetics, Population , Metagenomics , Genomics , Genome , Haplotypes
5.
Nature ; 555(7695): 190-196, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29466337

ABSTRACT

From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.


Subject(s)
Cultural Evolution/history , Genome, Human/genetics , Genomics , Human Migration/history , Chromosomes, Human, Y/genetics , DNA, Ancient , Europe , Gene Pool , Genetics, Population , Haplotypes , History, Ancient , Humans , Male , Spatio-Temporal Analysis
8.
Proc Natl Acad Sci U S A ; 114(31): 8205-8210, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28696282

ABSTRACT

Precise estimation of age is essential in evolutionary anthropology, especially to infer population age structures and understand the evolution of human life history diversity. However, in small-scale societies, such as hunter-gatherer populations, time is often not referred to in calendar years, and accurate age estimation remains a challenge. We address this issue by proposing a Bayesian approach that accounts for age uncertainty inherent to fieldwork data. We developed a Gibbs sampling Markov chain Monte Carlo algorithm that produces posterior distributions of ages for each individual, based on a ranking order of individuals from youngest to oldest and age ranges for each individual. We first validate our method on 65 Agta foragers from the Philippines with known ages, and show that our method generates age estimations that are superior to previously published regression-based approaches. We then use data on 587 Agta collected during recent fieldwork to demonstrate how multiple partial age ranks coming from multiple camps of hunter-gatherers can be integrated. Finally, we exemplify how the distributions generated by our method can be used to estimate important demographic parameters in small-scale societies: here, age-specific fertility patterns. Our flexible Bayesian approach will be especially useful to improve cross-cultural life history datasets for small-scale societies for which reliable age records are difficult to acquire.


Subject(s)
Aging , Anthropology/methods , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Bayes Theorem , Female , Fertility , Humans , Markov Chains , Middle Aged , Philippines , Population Density , Reproducibility of Results , Societies , Uncertainty
9.
Proc Natl Acad Sci U S A ; 113(25): 6886-91, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27274049

ABSTRACT

Farming and sedentism first appeared in southwestern Asia during the early Holocene and later spread to neighboring regions, including Europe, along multiple dispersal routes. Conspicuous uncertainties remain about the relative roles of migration, cultural diffusion, and admixture with local foragers in the early Neolithization of Europe. Here we present paleogenomic data for five Neolithic individuals from northern Greece and northwestern Turkey spanning the time and region of the earliest spread of farming into Europe. We use a novel approach to recalibrate raw reads and call genotypes from ancient DNA and observe striking genetic similarity both among Aegean early farmers and with those from across Europe. Our study demonstrates a direct genetic link between Mediterranean and Central European early farmers and those of Greece and Anatolia, extending the European Neolithic migratory chain all the way back to southwestern Asia.


Subject(s)
Agriculture , Anthropology , Europe , Genetics, Population , Humans , Mediterranean Region , Principal Component Analysis
10.
Bioinformatics ; 33(4): 568-570, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27797763

ABSTRACT

Summary: The Rab family of small GTPases regulates and provides specificity to the endomembrane trafficking system; each Rab subfamily is associated with specific pathways. Thus, characterization of Rab repertoires provides functional information about organisms and evolution of the eukaryotic cell. Yet, the complex structure of the Rab family limits the application of existing methods for protein classification. Here, we present a major redesign of the Rabifier, a bioinformatic pipeline for detection and classification of Rab GTPases. It is more accurate, significantly faster than the original version and is now open source, both the code and the data, allowing for community participation. Availability and Implementation: Rabifier and RabDB are freely available through the web at http://rabdb.org . The Rabifier package can be downloaded from the Python Package Index at https://pypi.python.org/pypi/rabifier , the source code is available at Github https://github.com/evocell/rabifier . Contact: jsurkont@igc.gulbenkian.pt or jleal@igc.gulbenkian.pt. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Software , rab GTP-Binding Proteins/genetics , Animals , Eukaryota/enzymology , Humans , rab GTP-Binding Proteins/classification
11.
Hum Mutat ; 38(1): 78-85, 2017 01.
Article in English | MEDLINE | ID: mdl-27650164

ABSTRACT

The aryl hydrocarbon receptor interacting protein (AIP) founder mutation R304* (or p.R304* ; NM_003977.3:c.910C>T, p.Arg304Ter) identified in Northern Ireland (NI) predisposes to acromegaly/gigantism; its population health impact remains unexplored. We measured R304* carrier frequency in 936 Mid Ulster, 1,000 Greater Belfast (both in NI) and 2,094 Republic of Ireland (ROI) volunteers and in 116 NI or ROI acromegaly/gigantism patients. Carrier frequencies were 0.0064 in Mid Ulster (95%CI = 0.0027-0.013; P = 0.0005 vs. ROI), 0.001 in Greater Belfast (0.00011-0.0047) and zero in ROI (0-0.0014). R304* prevalence was elevated in acromegaly/gigantism patients in NI (11/87, 12.6%, P < 0.05), but not in ROI (2/29, 6.8%) versus non-Irish patients (0-2.41%). Haploblock conservation supported a common ancestor for all the 18 identified Irish pedigrees (81 carriers, 30 affected). Time to most recent common ancestor (tMRCA) was 2550 (1,275-5,000) years. tMRCA-based simulations predicted 432 (90-5,175) current carriers, including 86 affected (18-1,035) for 20% penetrance. In conclusion, R304* is frequent in Mid Ulster, resulting in numerous acromegaly/gigantism cases. tMRCA is consistent with historical/folklore accounts of Irish giants. Forward simulations predict many undetected carriers; geographically targeted population screening improves asymptomatic carrier identification, complementing clinical testing of patients/relatives. We generated disease awareness locally, necessary for early diagnosis and improved outcomes of AIP-related disease.


Subject(s)
Acromegaly/epidemiology , Acromegaly/genetics , Genetic Predisposition to Disease , Gigantism/epidemiology , Gigantism/genetics , Intracellular Signaling Peptides and Proteins/genetics , Acromegaly/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Amino Acid Substitution , Chromosome Mapping , Cross-Sectional Studies , Female , Gene Frequency , Genotype , Gigantism/diagnosis , Heterozygote , Humans , Ireland/epidemiology , Male , Mass Screening , Middle Aged , Phenotype , Risk , Young Adult
12.
Mol Biol Evol ; 32(7): 1730-47, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25743545

ABSTRACT

Gene families often consist of members with diverse expression domains reflecting their functions in a wide variety of tissues. However, how the expression of individual members, and thus their tissue-specific functions, diversified during the course of gene family expansion is not well understood. In this study, we approached this question through the analysis of the duplication history and transcriptional evolution of a rapidly expanding subfamily of insect Ly6 genes. We analyzed different insect genomes and identified seven Ly6 genes that have originated from a single ancestor through sequential duplication within the higher Diptera. We then determined how the original embryonic expression pattern of the founding gene diversified by characterizing its tissue-specific expression in the beetle Tribolium castaneum, the butterfly Bicyclus anynana, and the mosquito Anopheles stephensi and those of its duplicates in three higher dipteran species, representing various stages of the duplication history (Megaselia abdita, Ceratitis capitata, and Drosophila melanogaster). Our results revealed that frequent neofunctionalization episodes contributed to the increased expression breadth of this subfamily and that these events occurred after duplication and speciation events at comparable frequencies. In addition, at each duplication node, we consistently found asymmetric expression divergence. One paralog inherited most of the tissue-specificities of the founder gene, whereas the other paralog evolved drastically reduced expression domains. Our approach attests to the power of combining a well-established duplication history with a comprehensive coverage of representative species in acquiring unequivocal information about the dynamics of gene expression evolution in gene families.


Subject(s)
Gene Expression Regulation , Genes, Insect , Insecta/genetics , Multigene Family , Animals , Embryo, Nonmammalian/metabolism , Evolution, Molecular , Gene Duplication , Gene Expression Profiling , Insecta/embryology , Organ Specificity/genetics , Phylogeny , Species Specificity
13.
Proteins ; 83(12): 2162-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26387794

ABSTRACT

Protein evolution is governed by processes that alter primary sequence but also the length of proteins. Protein length may change in different ways, but insertions, deletions and duplications are the most common. An optimal protein size is a trade-off between sequence extension, which may change protein stability or lead to acquisition of a new function, and shrinkage that decreases metabolic cost of protein synthesis. Despite the general tendency for length conservation across orthologous proteins, the propensity to accept insertions and deletions is heterogeneous along the sequence. For example, protein regions rich in repetitive peptide motifs are well known to extensively vary their length across species. Here, we analyze length conservation of coiled-coils, domains formed by an ubiquitous, repetitive peptide motif present in all domains of life, that frequently plays a structural role in the cell. We observed that, despite the repetitive nature, the length of coiled-coil domains is generally highly conserved throughout the tree of life, even when the remaining parts of the protein change, including globular domains. Length conservation is independent of primary amino acid sequence variation, and represents a conservation of domain physical size. This suggests that the conservation of domain size is due to functional constraints.


Subject(s)
Proteins/chemistry , Amino Acid Motifs , Models, Molecular , Peptides/chemistry , Protein Domains , Protein Stability
14.
Biochem J ; 449(2): 319-31, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23240612

ABSTRACT

Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.


Subject(s)
Biological Evolution , Cell Compartmentation , Eukaryotic Cells/metabolism , Prokaryotic Cells/metabolism , Eukaryotic Cells/classification , Intracellular Membranes/metabolism , Intracellular Membranes/ultrastructure , Microscopy, Electron , Organelles/metabolism , Organelles/ultrastructure , Prokaryotic Cells/classification , Proteins/metabolism , Symbiosis
15.
Int J Mol Sci ; 15(10): 17601-21, 2014 Sep 29.
Article in English | MEDLINE | ID: mdl-25268625

ABSTRACT

Hundreds of genetic variants have been associated to common diseases through genome-wide association studies (GWAS), yet there are limits to current approaches in detecting true small effect risk variants against a background of false positive findings. Here we addressed the missing heritability problem, aiming to test whether there are indeed risk variants within GWAS statistical noise and to develop a systematic strategy to retrieve these hidden variants. Employing an integrative approach, which combines protein-protein interactions with association data from GWAS for 6 common diseases, we found that associated-genes at less stringent significance levels (p < 0.1) with any of these diseases are functionally connected beyond noise expectation. This functional coherence was used to identify disease-relevant subnetworks, which were shown to be enriched in known genes, outperforming the selection of top GWAS genes. As a proof of principle, we applied this approach to breast cancer, supporting well-known breast cancer genes, while pinpointing novel susceptibility genes for experimental validation. This study reinforces the idea that GWAS are under-analyzed and that missing heritability is rather hidden. It extends the use of protein networks to reveal this missing heritability, thus leveraging the large investment in GWAS that produced so far little tangible gain.


Subject(s)
Genome-Wide Association Study , Models, Statistical , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Genetic Predisposition to Disease/genetics , Humans , Polymorphism, Single Nucleotide , Protein Interaction Maps/genetics
16.
Sci Rep ; 13(1): 18765, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907573

ABSTRACT

Joint inhumations of adults and children are an intriguing aspect of the shift from collective to single burial rites in third millennium BC Western Eurasia. Here, we revisit two exceptional Beaker period adult-child graves using ancient DNA: Altwies in Luxembourg and Dunstable Downs in Britain. Ancestry modelling and patterns of shared IBD segments between the individuals examined, and contemporary genomes from Central and Northwest Europe, highlight the continental connections of British Beakers. Although simultaneous burials may involve individuals with no social or biological ties, we present evidence that close blood relations played a role in shaping third millennium BC social systems and burial practices, for example a biological mother and her son buried together at Altwies. Extended family, such as a paternal aunt at Dunstable Downs, could also act as 'substitute parents' in the grave. Hypotheses are explored to explain such simultaneous inhumations. Whilst intercommunity violence, infectious disease and epidemics may be considered as explanations, they fail to account for both the specific, codified nature of this particular form of inhumation, and its pervasiveness, as evidenced by a representative sample of 131 adult-child graves from 88 sites across Eurasia, all dating to the third and second millennia BC.


Subject(s)
Archaeology , Burial , Humans , Adult , Female , Burial/methods , Europe , Parents , Adult Children
17.
PLoS Comput Biol ; 7(10): e1002217, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22022256

ABSTRACT

Rab proteins are small GTPases that act as essential regulators of vesicular trafficking. 44 subfamilies are known in humans, performing specific sets of functions at distinct subcellular localisations and tissues. Rab function is conserved even amongst distant orthologs. Hence, the annotation of Rabs yields functional predictions about the cell biology of trafficking. So far, annotating Rabs has been a laborious manual task not feasible for current and future genomic output of deep sequencing technologies. We developed, validated and benchmarked the Rabifier, an automated bioinformatic pipeline for the identification and classification of Rabs, which achieves up to 90% classification accuracy. We cataloged roughly 8.000 Rabs from 247 genomes covering the entire eukaryotic tree. The full Rab database and a web tool implementing the pipeline are publicly available at www.RabDB.org. For the first time, we describe and analyse the evolution of Rabs in a dataset covering the whole eukaryotic phylogeny. We found a highly dynamic family undergoing frequent taxon-specific expansions and losses. We dated the origin of human subfamilies using phylogenetic profiling, which enlarged the Rab repertoire of the Last Eukaryotic Common Ancestor with Rab14, 32 and RabL4. Furthermore, a detailed analysis of the Choanoflagellate Monosiga brevicollis Rab family pinpointed the changes that accompanied the emergence of Metazoan multicellularity, mainly an important expansion and specialisation of the secretory pathway. Lastly, we experimentally establish tissue specificity in expression of mouse Rabs and show that neo-functionalisation best explains the emergence of new human Rab subfamilies. With the Rabifier and RabDB, we provide tools that easily allows non-bioinformaticians to integrate thousands of Rabs in their analyses. RabDB is designed to enable the cell biology community to keep pace with the increasing number of fully-sequenced genomes and change the scale at which we perform comparative analysis in cell biology.


Subject(s)
rab GTP-Binding Proteins/metabolism , Animals , Databases, Protein , Humans , Phylogeny , Protein Transport , rab GTP-Binding Proteins/classification
18.
Curr Biol ; 32(20): 4350-4359.e6, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36044903

ABSTRACT

We report genome sequence data from six individuals excavated from the base of a medieval well at a site in Norwich, UK. A revised radiocarbon analysis of the assemblage is consistent with these individuals being part of a historically attested episode of antisemitic violence on 6 February 1190 CE. We find that four of these individuals were closely related and all six have strong genetic affinities with modern Ashkenazi Jews. We identify four alleles associated with genetic disease in Ashkenazi Jewish populations and infer variation in pigmentation traits, including the presence of red hair. Simulations indicate that Ashkenazi-associated genetic disease alleles were already at appreciable frequencies, centuries earlier than previously hypothesized. These findings provide new insights into a significant historical crime, into Ashkenazi population history, and into the origins of genetic diseases associated with modern Jewish populations.


Subject(s)
Burial , Jews , Humans , Gene Frequency , Jews/genetics , Jews/history , Alleles
19.
Curr Biol ; 30(21): 4307-4315.e13, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32888485

ABSTRACT

Lactase persistence (LP), the continued expression of lactase into adulthood, is the most strongly selected single gene trait over the last 10,000 years in multiple human populations. It has been posited that the primary allele causing LP among Eurasians, rs4988235-A [1], only rose to appreciable frequencies during the Bronze and Iron Ages [2, 3], long after humans started consuming milk from domesticated animals. This rapid rise has been attributed to an influx of people from the Pontic-Caspian steppe that began around 5,000 years ago [4, 5]. We investigate the spatiotemporal spread of LP through an analysis of 14 warriors from the Tollense Bronze Age battlefield in northern Germany (∼3,200 before present, BP), the oldest large-scale conflict site north of the Alps. Genetic data indicate that these individuals represent a single unstructured Central/Northern European population. We complemented these data with genotypes of 18 individuals from the Bronze Age site Mokrin in Serbia (∼4,100 to ∼3,700 BP) and 37 individuals from Eastern Europe and the Pontic-Caspian Steppe region, predating both Bronze Age sites (∼5,980 to ∼3,980 BP). We infer low LP in all three regions, i.e., in northern Germany and South-eastern and Eastern Europe, suggesting that the surge of rs4988235 in Central and Northern Europe was unlikely caused by Steppe expansions. We estimate a selection coefficient of 0.06 and conclude that the selection was ongoing in various parts of Europe over the last 3,000 years.


Subject(s)
DNA, Ancient , Lactase/genetics , Selection, Genetic , White People/genetics , Adult , Body Remains , DNA, Mitochondrial/genetics , Europe , Female , Gene Frequency , Humans , Male , Young Adult
20.
Elife ; 82019 06 04.
Article in English | MEDLINE | ID: mdl-31159924

ABSTRACT

CHC22 clathrin plays a key role in intracellular membrane traffic of the insulin-responsive glucose transporter GLUT4 in humans. We performed population genetic and phylogenetic analyses of the CHC22-encoding CLTCL1 gene, revealing independent gene loss in at least two vertebrate lineages, after arising from gene duplication. All vertebrates retained the paralogous CLTC gene encoding CHC17 clathrin, which mediates endocytosis. For vertebrates retaining CLTCL1, strong evidence for purifying selection supports CHC22 functionality. All human populations maintained two high frequency CLTCL1 allelic variants, encoding either methionine or valine at position 1316. Functional studies indicated that CHC22-V1316, which is more frequent in farming populations than in hunter-gatherers, has different cellular dynamics than M1316-CHC22 and is less effective at controlling GLUT4 membrane traffic, altering its insulin-regulated response. These analyses suggest that ancestral human dietary change influenced selection of allotypes that affect CHC22's role in metabolism and have potential to differentially influence the human insulin response.


Subject(s)
Clathrin Heavy Chains/genetics , Clathrin Heavy Chains/metabolism , Genetic Variation , Glucose/metabolism , Alleles , Diet , Evolution, Molecular , Humans , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL