Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Bioorg Med Chem Lett ; 28(14): 2451-2453, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29907393

ABSTRACT

Successful implementation of mRNA gene therapy is facing many hurdles, for example poor expression levels of the exogenously delivered mRNA transcripts. Herein we describe the synthesis of various 3'-modified RNA oligonucleotides, and we show that 3'-modification drastically stabilizes these oligonucleotides in cell extracts. Modification of the 3'-terminus of gaussia luciferase mRNA results in 3-fold increased and extended (>48 h) translation of the mRNA. Our findings suggest 3'-modification of RNA-transcripts as a valid approach to increase expression levels for application in mRNA gene therapy.


Subject(s)
Genetic Therapy , RNA, Messenger/genetics , Transcription, Genetic/genetics , Animals , Copepoda/enzymology , Dose-Response Relationship, Drug , HeLa Cells , Humans , Luciferases/genetics , Luciferases/metabolism , Molecular Structure , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Oligonucleotides/genetics , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Structure-Activity Relationship
2.
J Clin Endocrinol Metab ; 107(1): e57-e70, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34431493

ABSTRACT

PURPOSE: To evaluate the safety and potential efficacy of LLF580, a genetically engineered variant of human fibroblast growth factor-21, for triglyceride lowering, weight loss, and hepatic fat reduction. METHODS: A multicenter, double-blind, parallel design trial in obese, mildly hypertriglyceridemic adults randomized (1:1) to LLF580 300 mg or placebo subcutaneously every 4 weeks for 3 doses. RESULTS: Of 64 randomized study participants, 61 (mean ± SD: age 45 ± 11 years, 49% male, 80/15/5% Caucasian/African American/other, body mass index 36.1 ± 3.8 kg/m2) received LLF580 (n = 30) or placebo (n = 31) at 7 research sites in the United States. LLF580 lowered serum triglycerides by 54% (least square mean placebo adjusted change from baseline), total cholesterol 7%, low-density lipoprotein cholesterol 12%, and increased high-density lipoprotein cholesterol 36% compared with placebo (all P < 0.001) over 12 weeks. Substantial reduction of liver fat of 52% over placebo (P < 0.001) was also demonstrated in the setting of improved liver function tests including alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase, the composite enhanced liver fibrosis score, and N-terminal type III collagen propeptide (all P < 0.05). Insulin and C-peptide levels and insulin resistance by homeostatic model assessment for insulin resistance were all lower, and adiponectin higher with LLF580 treatment compared with placebo, whereas fasting glucose and glycated hemoglobin were unchanged. Reductions in biomarkers of bone formation without differences in markers of bone resorption were observed. LLF580 was generally safe and well tolerated, except for higher incidence of generally mild to moderate gastrointestinal adverse effects. CONCLUSIONS: In obese, mildly hypertriglyceridemic adults, LLF580 was generally safe and demonstrated beneficial effects on serum lipids, liver fat, and biomarkers of liver injury, suggesting it may be effective for treatment of select metabolic disorders including hypertriglyceridemia and nonalcoholic fatty liver disease. Assessments of longer term safety and efficacy are warranted. CLINICALTRIALS.GOV IDENTIFIER: NCT03466203.


Subject(s)
Biomarkers/blood , Body Mass Index , Fatty Liver/prevention & control , Fibroblast Growth Factors/administration & dosage , Hypertriglyceridemia/therapy , Obesity/physiopathology , Triglycerides/blood , Adult , Double-Blind Method , Female , Fibroblast Growth Factors/genetics , Follow-Up Studies , Humans , Hypertriglyceridemia/genetics , Hypertriglyceridemia/pathology , Male , Middle Aged , Prognosis
3.
Endocrinology ; 162(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-33951176

ABSTRACT

Fibroblast growth factor (FGF) 21 is a member of the FGF family of proteins. The biological activity of FGF21 was first shown to induce insulin-independent glucose uptake in adipocytes through the GLUT1 transporter. Subsequently, it was shown to have effects on the liver to increase fatty acid oxidation. FGF21 treatment provides beneficial metabolic effects in both animal models and patients with obesity, type 2 diabetes mellitus (T2D) and/or fatty liver disease. In this paper, we revisited the original finding and found that insulin-independent glucose uptake in adipocytes is preserved in the presence of an insulin receptor antagonist. Using a 40-kDa PEGylated (PEG) and half-life extended form of FGF21 (FGF21-PEG), we extended these in vitro results to 2 different mouse models of diabetes. FGF21-PEG normalized plasma glucose in streptozotocin-treated mice, a model of type 1 diabetes (T1D), without restoring pancreatic ß-cell function. FGF21-PEG also normalized plasma glucose levels and improved glucose tolerance in mice chronically treated with an insulin competitive insulin receptor antagonist, a model of autoimmune/type-B insulin resistance. These data extend the pharmacological potential of FGF21 beyond the settings of T2D, fatty liver, and obesity.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Fibroblast Growth Factors/pharmacology , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , HEK293 Cells , Humans , Hyperglycemia/blood , Hyperglycemia/etiology , Hyperglycemia/pathology , Hyperglycemia/prevention & control , Insulin/metabolism , Insulin Resistance/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/blood , Obesity/complications , Obesity/pathology , Receptor, Insulin/antagonists & inhibitors , Receptor, Insulin/drug effects , Receptor, Insulin/physiology , Streptozocin
4.
Circ Genom Precis Med ; 12(8): e002472, 2019 08.
Article in English | MEDLINE | ID: mdl-31430210

ABSTRACT

BACKGROUND: Human genetic variation in the NPR1 (natriuretic peptide receptor 1 gene, encoding NPR-A, atrial natriuretic peptide receptor 1) was recently shown to affect blood pressure (BP). NPR-A catalyzes the intracellular conversion of guanosine triphosphate to cGMP (cyclic 3',5'-guanosine monophosphate) on binding of ANP, BNP (atrial or brain natriuretic peptide). Increased levels of cGMP decrease BP by inducing natriuresis, diuresis, and vasodilation. METHODS: We performed a meta-analysis of low-frequency and rare NPR1 variants for BP association in up to 491 584 unrelated individuals. To examine whether the identified BP-associated variants affect NPR-A function, the cGMP response to ANP and BNP was measured in cells expressing wild-type NPR1 and cells expressing the NPR1 variants. RESULTS: In this study, we identified BP associations of 3 amino acid altering variants of NPR1. The minor alleles of rs35479618 (p.E967K, gnomAD non-Finnish European allele frequency 0.017) and rs116245325 (p.L1034F, allele frequency 0.0007) were associated with higher BP (P=4.0×10-25 and P=9.9×10-8, respectively), while the minor allele of rs61757359 (p.G541S, allele frequency 0.003) was associated with lower BP (P=1.8×10-9). Cells transiently expressing 967K or 1034F NPR-A displayed decreased cGMP production in response to ANP and BNP (all P<10-6), while cells expressing 541S NPR-A produced more cGMP compared with cells expressing wild-type NPR-A (P≤4.13×10-5 for ANP and P≤4.24×10-3 for BNP). CONCLUSIONS: In summary, the loss or gain of guanylate cyclase activity for these NPR1 allelic variants could explain the higher or lower BP observed for carriers in large population-based studies.


Subject(s)
Blood Pressure , Guanylate Cyclase/metabolism , Hypertension/genetics , Receptors, Atrial Natriuretic Factor/genetics , Animals , Genetic Variation , Guanylate Cyclase/genetics , Humans , Hypertension/enzymology , Hypertension/metabolism , Polymorphism, Single Nucleotide , Receptors, Atrial Natriuretic Factor/metabolism
5.
Oligonucleotides ; 16(4): 337-51, 2006.
Article in English | MEDLINE | ID: mdl-17155909

ABSTRACT

Aptamers are short oligonucleotides that fold into well-defined three-dimensional architectures thereby enabling specific binding to molecular targets such as proteins. To be successful as a novel therapeutic modality, it is important for aptamers to not only bind their targets with high specificity and affinity, but also to exhibit favorable properties with respect to in vivo stability, cost-effective synthesis, and tolerability (i.e., safety). We describe methods for generating aptamers comprising 2 - deoxy purines and 2 -O-methyl pyrimidines (dRmY) that broadly satisfy many of these additional constraints. Conditions under which dRmY transcripts can be efficiently synthesized using mutant T7 RNA polymerases have been identified and used to generate large libraries from which dRmY aptamers to multiple target proteins, including interleukin (IL)-23 and thrombin, have been successfully discovered using the SELEX process. dRmY aptamers are shown to be highly nuclease-resistant, long-lived in vivo, efficiently synthesized, and capable of binding protein targets in a manner that inhibits their biologic activity with K(D) values in the low nM range. We believe that dRmY aptamers have considerable potential as a new class of therapeutic aptamers.


Subject(s)
Aptamers, Nucleotide/therapeutic use , Animals , Aptamers, Nucleotide/chemical synthesis , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Base Sequence , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Drug Stability , Humans , Mice , Molecular Structure , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SELEX Aptamer Technique , Transcription, Genetic , Viral Proteins/genetics , Viral Proteins/metabolism
6.
Nucleic Acids Res ; 32(5): 1756-66, 2004.
Article in English | MEDLINE | ID: mdl-15026535

ABSTRACT

We have utilized in vitro selection technology to develop allosteric ribozyme sensors that are specific for the small molecule analytes caffeine or aspartame. Caffeine- or aspartame-responsive ribozymes were converted into fluorescence-based RiboReporter trade mark sensor systems that were able to detect caffeine or aspartame in solution over a concentration range from 0.5 to 5 mM. With read-times as short as 5 min, these caffeine- or aspartame-dependent ribozymes function as highly specific and facile molecular sensors. Interestingly, successful isolation of allosteric ribozymes for the analytes described here was enabled by a novel selection strategy that incorporated elements of both modular design and activity-based selection methods typically used for generation of catalytic nucleic acids.


Subject(s)
Aspartame/analysis , Biosensing Techniques/methods , Caffeine/analysis , RNA, Catalytic/chemistry , Allosteric Regulation , Base Sequence , Directed Molecular Evolution , Molecular Sequence Data , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , Spectrometry, Fluorescence
7.
Chem Biol ; 11(4): 499-508, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15123244

ABSTRACT

Two molecular sensors that specifically recognize ADP in a background of over 100-fold molar excess of ATP are described. These sensors are nucleic-acid based and comprise a general method for monitoring protein kinase activity. The ADP-aptamer scintillation proximity assay is configured in a single-step, homogeneous format while the allosteric ribozyme (RiboReporter) sensor generates a fluorescent signal upon ADP-dependent ribozyme self-cleavage. Both systems perform well when configured for high-throughput screening and have been used to rediscover a known protein kinase inhibitor in a high-throughput screening format.


Subject(s)
Adenosine Diphosphate/analysis , Adenosine Diphosphate/metabolism , Biosensing Techniques/methods , Protein Kinases/analysis , Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Base Sequence , Fluorescence , Ligands , Molecular Sequence Data , RNA, Catalytic/chemistry , RNA, Catalytic/metabolism , Signal Transduction , Substrate Specificity , Time Factors
8.
Environ Pollut ; 159(12): 3302-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21903311

ABSTRACT

Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source.


Subject(s)
Ecosystem , Environmental Exposure , Mercury/blood , Songbirds/blood , Animal Migration , Animals , Food Chain , Mercury/toxicity , Rivers/chemistry , Songbirds/physiology , Virginia , Water Pollutants, Chemical/blood , Water Pollutants, Chemical/toxicity
9.
Structure ; 17(11): 1476-84, 2009 Nov 11.
Article in English | MEDLINE | ID: mdl-19913482

ABSTRACT

ARC1172 is a 41-mer DNA aptamer selected to bind the A1 domain of von Willebrand factor (VWF). A derivative of ARC1172 with modifications to increase intravascular survival inhibits carotid artery thrombosis in a Cynomolgus macaque model and inhibits VWF-dependent platelet aggregation in humans, suggesting that such aptamers may be useful to prevent or treat thrombosis. In the crystal structure of a VWF A1-ARC1172 complex, the aptamer adopts a three-stem structure of mainly B-form DNA with three noncanonical base pairs and 9 unpaired residues, 6 of which are stabilized by base-base or base-deoxyribose stacking interactions. The aptamer-protein interface is characterized by cation-pi interactions involving Arg, Lys, and Gln residues, often stabilized by H-bonds with adjacent bases. The ARC1172 binding site on the A1 domain overlaps with that of botrocetin and clashes with glycoprotein Ibalpha binding at an adjacent site, which accounts for the antithrombotic activity of ARC1172 and related aptamers.


Subject(s)
Aptamers, Nucleotide/metabolism , Fibrinolytic Agents/metabolism , Models, Molecular , Multiprotein Complexes/metabolism , von Willebrand Factor/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Binding Sites/genetics , Crystallography , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , Humans , Multiprotein Complexes/chemistry , Protein Binding , von Willebrand Factor/chemistry
10.
Nat Struct Biol ; 10(7): 494; author reply 494-5, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12825083
SELECTION OF CITATIONS
SEARCH DETAIL