Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Psychosom Med ; 84(2): 151-158, 2022.
Article in English | MEDLINE | ID: mdl-34629427

ABSTRACT

OBJECTIVE: Posttraumatic stress disorder (PTSD) has been related to accelerated biological aging processes, but objective evidence for this association is limited. DNA methylation (DNAm) age acceleration is a novel measure of biological aging that may help clarify if PTSD is related to biological aging processes. We aim to examine whether PTSD is associated with biological aging using a comprehensive set of DNAm age acceleration markers and to what extent the unshared environment contributes to the association. METHODS: Using a cross-sectional co-twin control study design, we investigated the association of the clinical diagnosis and symptom severity of PTSD with six measurements of DNAm age acceleration based on epigenome-wide data derived from peripheral blood lymphocytes of 296 male twins from the Vietnam Era Twin Registry. RESULTS: Twins with current PTSD had significantly advanced DNAm age acceleration compared with twins without PTSD for five of six measures of DNAm age acceleration. Across almost all measures of DNAm age acceleration, twins with current PTSD were "epigenetically older" than their twin brothers without PTSD: estimated differences ranged between 1.6 (95% confidence interval = 0.0-3.1) and 2.7 (95% confidence interval = 0.5-4.8) biological age year-equivalents. A higher Clinician-Administered PTSD Scale score was also associated with a higher within-pair DNAm age acceleration. Results remained consistent after adjustment for behavioral and cardiovascular risk factors. CONCLUSIONS: PTSD is associated with epigenetic age acceleration, primarily through unshared environmental mechanisms as opposed to genetic or familial factors. These results suggest that PTSD is related to systemic processes relevant to biological aging.


Subject(s)
Stress Disorders, Post-Traumatic , Acceleration , Aging/genetics , Cross-Sectional Studies , DNA Methylation , Epigenesis, Genetic , Humans , Male , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/genetics
2.
Depress Anxiety ; 39(12): 741-750, 2022 12.
Article in English | MEDLINE | ID: mdl-35758529

ABSTRACT

INTRODUCTION: Prior studies have shown inconsistent findings of an association between depression and epigenetic aging. DNA methylation (DNAm) age acceleration can measure biological aging. We adopted a robust co-twin control study design to examine whether depression is associated with DNAm age acceleration after accounting for the potential confounding influences of genetics and family environment. METHODS: We analyzed data on a sub-cohort of the Vietnam Era Twin Registry. A total of 291 twins participated at baseline and 177 at follow-up visit after a mean of 11.7 years, with 111 participants having DNA samples for both time points. Depression was measured using the Beck Depression Inventory II (BDI-II). Six measures of DNAm age acceleration were computed at each time point, including Horvath's DNAm age acceleration (HorvathAA), intrinsic epigenetic age acceleration (IEAA), Hannum's DNAm age acceleration (HannumAA), extrinsic epigenetic age acceleration (EEAA), GrimAge acceleration (GrimAA), and PhenoAge acceleration (PhenoAA). Mixed-effects modeling was used to assess the within-pair association between depression and DNAm age acceleration. RESULTS: At baseline, a 10-unit higher BDI-II total score was associated with HannumAA (0.73 years, 95% confidence interval [CI] 0.13-1.33, p = .019) and EEAA (0.94 years, 95% CI 0.22-1.66, p = .012). At follow-up, 10-unit higher BDI-II score was associated with PhenoAA (1.32 years, 95% CI 0.18-2.47, p = .027). CONCLUSION: We identified that depression is associated with higher levels of DNAm age acceleration. Further investigation is warranted to better understand the underlying mechanisms for the potential causal relationship between depression and accelerated aging.


Subject(s)
Depression , Epigenesis, Genetic , Humans , Depression/epidemiology , Depression/genetics , DNA Methylation , Aging/genetics , Acceleration
SELECTION OF CITATIONS
SEARCH DETAIL