Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Nature ; 585(7823): 107-112, 2020 09.
Article in English | MEDLINE | ID: mdl-32728218

ABSTRACT

Treating patients who have cancer with vaccines that stimulate a targeted immune response is conceptually appealing, but cancer vaccine trials have not been successful in late-stage patients with treatment-refractory tumours1,2. We are testing melanoma FixVac (BNT111)-an intravenously administered liposomal RNA (RNA-LPX) vaccine, which targets four non-mutated, tumour-associated antigens that are prevalent in melanoma-in an ongoing, first-in-human, dose-escalation phase I trial in patients with advanced melanoma (Lipo-MERIT trial, ClinicalTrials.gov identifier NCT02410733). We report here data from an exploratory interim analysis that show that melanoma FixVac, alone or in combination with blockade of the checkpoint inhibitor PD1, mediates durable objective responses in checkpoint-inhibitor (CPI)-experienced patients with unresectable melanoma. Clinical responses are accompanied by the induction of strong CD4+ and CD8+ T cell immunity against the vaccine antigens. The antigen-specific cytotoxic T-cell responses in some responders reach magnitudes typically reported for adoptive T-cell therapy, and are durable. Our findings indicate that RNA-LPX vaccination is a potent immunotherapy in patients with CPI-experienced melanoma, and suggest the general utility of non-mutant shared tumour antigens as targets for cancer vaccination.


Subject(s)
Antineoplastic Agents/therapeutic use , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Melanoma/immunology , Melanoma/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , RNA, Neoplasm/genetics , T-Lymphocytes/immunology , Antigens, Neoplasm/immunology , Antineoplastic Agents/pharmacology , Cancer Vaccines/administration & dosage , Cancer Vaccines/adverse effects , Combined Modality Therapy , Humans , Melanoma/drug therapy , Melanoma/pathology , Neoplasm Staging , T-Lymphocytes/cytology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , Vaccination
2.
Proc Natl Acad Sci U S A ; 119(12): e2122310119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35290110

ABSTRACT

Immune-suppressive (M2-type) macrophages can contribute to the progression of cancer and fibrosis. In chronic liver diseases, M2-type macrophages promote the replacement of functional parenchyma by collagen-rich scar tissue. Here, we aim to prevent liver fibrosis progression by repolarizing liver M2-type macrophages toward a nonfibrotic phenotype by applying a pH-degradable, squaric ester­based nanogel carrier system. This nanotechnology platform enables a selective conjugation of the highly water-soluble bisphosphonate alendronate, a macrophage-repolarizing agent that intrinsically targets bone tissue. The covalent delivery system, however, promotes the drug's safe and efficient delivery to nonparenchymal cells of fibrotic livers after intravenous administration. The bisphosphonate payload does not eliminate but instead reprograms profibrotic M2- toward antifibrotic M1-type macrophages in vitro and potently prevents liver fibrosis progression in vivo, mainly via induction of a fibrolytic phenotype, as demonstrated by transcriptomic and proteomic analyses. Therefore, the alendronate-loaded squaric ester­based nanogels represent an attractive approach for nanotherapeutic interventions in fibrosis and other diseases driven by M2-type macrophages, including cancer.


Subject(s)
Diphosphonates , Liver Cirrhosis , Diphosphonates/pharmacology , Humans , Hydrogen-Ion Concentration , Liver Cirrhosis/drug therapy , Macrophages , Nanogels
3.
Nature ; 547(7662): 222-226, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28678784

ABSTRACT

T cells directed against mutant neo-epitopes drive cancer immunity. However, spontaneous immune recognition of mutations is inefficient. We recently introduced the concept of individualized mutanome vaccines and implemented an RNA-based poly-neo-epitope approach to mobilize immunity against a spectrum of cancer mutations. Here we report the first-in-human application of this concept in melanoma. We set up a process comprising comprehensive identification of individual mutations, computational prediction of neo-epitopes, and design and manufacturing of a vaccine unique for each patient. All patients developed T cell responses against multiple vaccine neo-epitopes at up to high single-digit percentages. Vaccine-induced T cell infiltration and neo-epitope-specific killing of autologous tumour cells were shown in post-vaccination resected metastases from two patients. The cumulative rate of metastatic events was highly significantly reduced after the start of vaccination, resulting in a sustained progression-free survival. Two of the five patients with metastatic disease experienced vaccine-related objective responses. One of these patients had a late relapse owing to outgrowth of ß2-microglobulin-deficient melanoma cells as an acquired resistance mechanism. A third patient developed a complete response to vaccination in combination with PD-1 blockade therapy. Our study demonstrates that individual mutations can be exploited, thereby opening a path to personalized immunotherapy for patients with cancer.


Subject(s)
Cancer Vaccines/genetics , Cancer Vaccines/immunology , Melanoma/immunology , Melanoma/therapy , Mutation/genetics , Precision Medicine/methods , RNA/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen/immunology , CD8 Antigens/immunology , Cancer Vaccines/therapeutic use , Epitopes/genetics , Epitopes/immunology , Humans , Immunotherapy/methods , Melanoma/genetics , Neoplasm Metastasis , Neoplasm Recurrence, Local/prevention & control , Nivolumab , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/immunology , Vaccination , beta 2-Microglobulin/deficiency
4.
Cancer Immunol Immunother ; 71(8): 1975-1988, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34971406

ABSTRACT

Human papilloma virus (HPV) infection is a causative agent for several cancers types (genital, anal and head and neck region). The HPV E6 and E7 proteins are oncogenic drivers and thus are ideal candidates for therapeutic vaccination. We recently reported that a novel ribonucleic acid lipoplex (RNA-LPX)-based HPV16 vaccine, E7 RNA-LPX, mediates regression of mouse HPV16+ tumors and establishes protective T cell memory. An HPV16 E6/E7 RNA-LPX vaccine is currently being investigated in two phase I and II clinical trials in various HPV-driven cancer types; however, it remains a high unmet medical need for treatments for patients with radiosensitive HPV16+ tumors. Therefore, we set out to investigate the therapeutic efficacy of E7 RNA-LPX vaccine combined with standard-of-care local radiotherapy (LRT). We demonstrate that E7 RNA-LPX synergizes with LRT in HPV16+ mouse tumors, with potent therapeutic effects exceeding those of either monotherapy. Mode of action studies revealed that the E7 RNA-LPX vaccine induced high numbers of intratumoral-E7-specific CD8+ T cells, rendering cold tumors immunologically hot, whereas LRT primarily acted as a cytotoxic therapy, reducing tumor mass and intratumor hypoxia by predisposing tumor cells to antigen-specific T cell-mediated killing. Overall, LRT enhanced the effector function of E7 RNA-LPX-primed T cell responses. The therapeutic synergy was dependent on total radiation dose, rather than radiation dose-fractionation. Together, these results show that LRT synergizes with E7 RNA-LPX and enhances its anti-tumor activity against HPV16+ cancer models. This work paves into a new translational therapy for HPV16+ cancer patients.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Animals , CD8-Positive T-Lymphocytes , Female , Human papillomavirus 16/genetics , Humans , Mice , Mice, Inbred C57BL , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/genetics , RNA , Vaccination
5.
Nature ; 534(7607): 396-401, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27281205

ABSTRACT

Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.


Subject(s)
Antigens, Neoplasm/immunology , Antigens, Viral/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immunotherapy/methods , Melanoma/immunology , Melanoma/therapy , RNA/administration & dosage , Administration, Intravenous , Animals , Antigen Presentation/immunology , Antigens, Neoplasm/genetics , Antigens, Viral/genetics , Autoantigens/genetics , Autoantigens/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/genetics , Clinical Trials, Phase I as Topic , Dendritic Cells/cytology , Disease Models, Animal , Drug Carriers/administration & dosage , Female , Humans , Interferon Type I/immunology , Interferon Type I/metabolism , Lymphocyte Activation/immunology , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Macrophages/immunology , Macrophages/metabolism , Male , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Nanoparticles/administration & dosage , RNA/genetics , Static Electricity , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Toll-Like Receptor 7/immunology
6.
J Transl Med ; 19(1): 482, 2021 11 27.
Article in English | MEDLINE | ID: mdl-34838059

ABSTRACT

BACKGROUND: CAR T-cell therapy has been recently unveiled as one of the most promising cancer therapies in hematological malignancies. However, solid tumors mount a profound line of defense to escape immunosurveillance by CAR T-cells. Among them, cytokines with an inhibitory impact on the immune system such as IL-10 and TGFß are of great importance: TGFß is a pleiotropic cytokine, which potently suppresses the immune system and is secreted by a couple of TME resident and tumor cells. METHODS: In this study, we hypothesized that knocking out the TGFß receptor II gene, could improve CAR T-cell functions in vitro and in vivo. Hereby, we used the CRISPR/Cas9 system, to knockout the TGFßRII gene in T-cells and could monitor the efficient gene knock out by genome analysis techniques. Next, Mesothelin or Claudin 6 specific CAR constructs were overexpressed via IVT-RNA electroporation or retroviral transduction and the poly-functionality of these TGFßRII KO CAR T-cells in terms of proliferation, cytokine secretion and cytotoxicity were assessed and compared with parental CAR T-cells. RESULTS: Our experiments demonstrated that TGFßRII KO CAR T-cells fully retained their capabilities in killing tumor antigen positive target cells and more intriguingly, could resist the anti-proliferative effect of exogenous TGFß in vitro outperforming wild type CAR T-cells. Noteworthy, no antigen or growth factor-independent proliferation of these TGFßRII KO CAR T-cells has been recorded. TGFßRII KO CAR T-cells also resisted the suppressive effect of induced regulatory T-cells in vitro to a larger extent. Repetitive antigen stimulation demonstrated that these TGFßRII KO CAR T-cells will experience less activation induced exhaustion in comparison to the WT counterpart. CONCLUSION: The TGFßRII KO approach may become an indispensable tool in immunotherapy of solid tumors, as it may surmount one of the key negative regulatory signaling pathways in T-cells.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , CRISPR-Cas Systems/genetics , Humans , Immunotherapy, Adoptive , Mesothelin , Neoplasms/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism
7.
Nature ; 520(7549): 692-6, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25901682

ABSTRACT

Tumour-specific mutations are ideal targets for cancer immunotherapy as they lack expression in healthy tissues and can potentially be recognized as neo-antigens by the mature T-cell repertoire. Their systematic targeting by vaccine approaches, however, has been hampered by the fact that every patient's tumour possesses a unique set of mutations ('the mutanome') that must first be identified. Recently, we proposed a personalized immunotherapy approach to target the full spectrum of a patient's individual tumour-specific mutations. Here we show in three independent murine tumour models that a considerable fraction of non-synonymous cancer mutations is immunogenic and that, unexpectedly, the majority of the immunogenic mutanome is recognized by CD4(+) T cells. Vaccination with such CD4(+) immunogenic mutations confers strong antitumour activity. Encouraged by these findings, we established a process by which mutations identified by exome sequencing could be selected as vaccine targets solely through bioinformatic prioritization on the basis of their expression levels and major histocompatibility complex (MHC) class II-binding capacity for rapid production as synthetic poly-neo-epitope messenger RNA vaccines. We show that vaccination with such polytope mRNA vaccines induces potent tumour control and complete rejection of established aggressively growing tumours in mice. Moreover, we demonstrate that CD4(+) T cell neo-epitope vaccination reshapes the tumour microenvironment and induces cytotoxic T lymphocyte responses against an independent immunodominant antigen in mice, indicating orchestration of antigen spread. Finally, we demonstrate an abundance of mutations predicted to bind to MHC class II in human cancers as well by employing the same predictive algorithm on corresponding human cancer types. Thus, the tailored immunotherapy approach introduced here may be regarded as a universally applicable blueprint for comprehensive exploitation of the substantial neo-epitope target repertoire of cancers, enabling the effective targeting of every patient's tumour with vaccines produced 'just in time'.


Subject(s)
Epitopes, T-Lymphocyte/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Immunotherapy/methods , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mutation/genetics , Algorithms , Animals , CD4-Positive T-Lymphocytes/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Computer Simulation , Disease Models, Animal , Epitopes, T-Lymphocyte/immunology , Exome/genetics , Female , Histocompatibility Antigens Class II/metabolism , Humans , Melanoma, Experimental/genetics , Mice , Precision Medicine/methods , Sequence Analysis, DNA , Survival Analysis
8.
Small ; 16(18): e1907574, 2020 05.
Article in English | MEDLINE | ID: mdl-32250017

ABSTRACT

The current understanding of nanoparticle-protein interactions indicates that they rapidly adsorb proteins upon introduction into a living organism. The formed protein corona determines thereafter identity and fate of nanoparticles in the body. The present study evaluates the protein affinity of three core-crosslinked polymeric nanoparticles with long circulation times, differing in the hydrophilic polymer material forming the particle surface, namely poly(N-2-hydroxypropylmethacrylamide) (pHPMA), polysarcosine (pSar), and poly(ethylene glycol) (PEG). This includes the nanotherapeutic CPC634, which is currently in clinical phase II evaluation. To investigate possible protein corona formation, the nanoparticles are incubated in human blood plasma and separated by asymmetrical flow field-flow fractionation (AF4). Notably, light scattering shows no detectable differences in particle size or polydispersity upon incubation with plasma for all nanoparticles, while in gel electrophoresis, minor amounts of proteins can be detected in the particle fraction. Label-free quantitative proteomics is additionally applied to analyze and quantify the composition of the proteins. It proves that some proteins are enriched, but their concentration is significantly less than one protein per particle. Thus, most of the nanoparticles are not associated with any proteins. Therefore, this work underlines that polymeric nanoparticles can be synthesized, for which a protein corona formation does not take place.


Subject(s)
Nanoparticles , Protein Corona , Humans , Hydrophobic and Hydrophilic Interactions , Particle Size , Peptides , Polyethylene Glycols , Sarcosine/analogs & derivatives
9.
Recent Results Cancer Res ; 214: 153-167, 2020.
Article in English | MEDLINE | ID: mdl-31473852

ABSTRACT

After more than a century of efforts to establish cancer immunotherapy in clinical practice, the advent of checkpoint inhibition (CPI) therapy was a critical breakthrough toward this direction (Hodi et al. in Cell Rep 13(2):412-424, 2010; Wolchok et al. in N Engl J Med 369(2):122-133, 2013; Herbst et al. in Nature 515(7528):563-567, 2014; Tumeh et al. in Nature 515(7528):568-571, 2014). Further, CPIs shifted the focus from long studied shared tumor-associated antigens to mutated ones. As cancer is caused by mutations in somatic cells, the concept to utilize these correlates of 'foreignness' to enable recognition and lysis of the cancer cell by T cell immunity seems an obvious thing to do.


Subject(s)
Cancer Vaccines , Epitopes/immunology , Immunotherapy , Neoplasms/therapy , Antigens, Neoplasm/immunology , Humans
10.
Mol Ther ; 27(4): 824-836, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30638957

ABSTRACT

Synthetic mRNA has emerged as a powerful tool for the transfer of genetic information, and it is being explored for a variety of therapeutic applications. Many of these applications require prolonged intracellular persistence of mRNA to improve bioavailability of the encoded protein. mRNA molecules are intrinsically unstable and their intracellular kinetics depend on the UTRs embracing the coding sequence, in particular the 3' UTR elements. We describe here a novel and generally applicable cell-based selection process for the identification of 3' UTRs that augment the expression of proteins encoded by synthetic mRNA. Moreover, we show, for two applications of mRNA therapeutics, namely, (1) the delivery of vaccine antigens in order to mount T cell immune responses and (2) the introduction of reprogramming factors into differentiated cells in order to induce pluripotency, that mRNAs tagged with the 3' UTR elements discovered in this study outperform those with commonly used 3' UTRs. This approach further leverages the utility of mRNA as a gene therapy drug format.


Subject(s)
3' Untranslated Regions/genetics , Gene Library , Genetic Therapy/methods , RNA Stability , RNA, Messenger/genetics , Animals , Blood Donors , Cancer Vaccines , Cells, Cultured , Cellular Reprogramming/genetics , Female , Fibroblasts , Gene Transfer Techniques , Half-Life , Humans , Induced Pluripotent Stem Cells , Mice , Mice, Inbred BALB C , RNA, Messenger/metabolism , Vaccination
11.
Chem Soc Rev ; 48(1): 351-381, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30465669

ABSTRACT

Immunotherapy is revolutionizing the treatment of cancer. It can achieve unprecedented responses in advanced-stage patients, including complete cures and long-term survival. However, immunotherapy also has limitations, such as its relatively low response rates and the development of severe side effects. These drawbacks are gradually being overcome by improving our understanding of the immune system, as well as by establishing combination regimens in which immunotherapy is combined with other treatment modalities. In addition to this, in recent years, progress made in chemistry, nanotechnology and materials science has started to impact immuno-oncology, resulting in more effective and less toxic immunotherapy interventions. In this context, multiple different nanomedicine formulations and macroscale materials have been shown to be able to boost anti-cancer immunity and the efficacy of immunomodulatory drugs. We here review nanotechnological and materials chemistry efforts related to endogenous and exogenous vaccination, to the engineering of antigen-presenting cells and T cells, and to the modulation of the tumor microenvironment. We also discuss limitations, current trends and future directions. Together, the insights provided and the evidence obtained indicate that there is a bright future ahead for engineering nanomedicines and macroscale materials for immuno-oncology applications.


Subject(s)
Immunotherapy , Macromolecular Substances/chemistry , Nanomedicine , Neoplasms/immunology , Neoplasms/therapy , Humans
12.
J Allergy Clin Immunol ; 142(5): 1558-1570, 2018 11.
Article in English | MEDLINE | ID: mdl-29382591

ABSTRACT

BACKGROUND: Nanoparticle (NP)-based vaccines are attractive immunotherapy tools because of their capability to codeliver antigen and adjuvant to antigen-presenting cells. Their cellular distribution and serum protein interaction ("protein corona") after systemic administration and their effect on the functional properties of NPs is poorly understood. OBJECTIVES: We analyzed the relevance of the protein corona on cell type-selective uptake of dextran-coated NPs and determined the outcome of vaccination with NPs that codeliver antigen and adjuvant in disease models of allergy. METHODS: The role of protein corona constituents for cellular binding/uptake of dextran-coated ferrous nanoparticles (DEX-NPs) was analyzed both in vitro and in vivo. DEX-NPs conjugated with the model antigen ovalbumin (OVA) and immunostimulatory CpG-rich oligodeoxynucleotides were administered to monitor the induction of cellular and humoral immune responses. Therapeutic effects of this DEX-NP vaccine in mouse models of OVA-induced anaphylaxis and allergic asthma were assessed. RESULTS: DEX-NPs triggered lectin-induced complement activation, yielding deposition of activated complement factor 3 on the DEX-NP surface. In the spleen DEX-NPs targeted predominantly B cells through complement receptors 1 and 2. The DEX-NP vaccine elicited much stronger OVA-specific IgG2a production than coadministered soluble OVA plus CpG oligodeoxynucleotides. B-cell binding of the DEX-NP vaccine was critical for IgG2a production. Treatment of OVA-sensitized mice with the DEX-NP vaccine prevented induction of anaphylactic shock and allergic asthma accompanied by IgE inhibition. CONCLUSIONS: Opsonization of lectin-coated NPs by activated complement components results in selective B-cell targeting. The intrinsic B-cell targeting property of lectin-coated NPs can be exploited for treatment of allergic immune responses.


Subject(s)
Anaphylaxis/immunology , B-Lymphocytes/immunology , Hypersensitivity/immunology , Nanoparticles/administration & dosage , Protein Corona/immunology , Animals , Antigens/administration & dosage , Dextrans/administration & dosage , Drug Carriers/administration & dosage , Female , Ferrous Compounds/administration & dosage , Lectins/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Oligodeoxyribonucleotides/administration & dosage , Ovalbumin/administration & dosage , T-Lymphocytes/immunology , Vaccines/administration & dosage
13.
Mol Pharm ; 15(9): 3909-3919, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30028629

ABSTRACT

Targeting mRNA to eukaryotic cells is an emerging technology for basic research and provides broad applications in cancer immunotherapy, vaccine development, protein replacement, and in vivo genome editing. Although a plethora of nanoparticles for efficient mRNA delivery exists, in vivo mRNA targeting to specific organs, tissue compartments, and cells remains a major challenge. For this reason, methods for reporting the in vivo targeting specificity of different mRNA nanoparticle formats will be crucial. Here, we describe a straightforward method for monitoring the in vivo targeting efficiency of mRNA-loaded nanoparticles in mice. To achieve accurate mRNA delivery readouts, we loaded lipoplex nanoparticles with Cre-recombinase-encoding mRNA and injected these into commonly used Cre reporter mouse strains. Our results show that this approach provides readouts that accurately report the targeting efficacy of mRNA into organs, tissue structures, and single cells as a function of the used mRNA delivery system. The method described here establishes a versatile basis for determining in vivo mRNA targeting profiles and can be systematically applied for testing and improving mRNA packaging formats.


Subject(s)
Nanoparticles/chemistry , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Animals , Chromatography, Liquid , Liposomes/chemistry , Mass Spectrometry , Mice , Particle Size
14.
Curr Issues Mol Biol ; 22: 113-128, 2017.
Article in English | MEDLINE | ID: mdl-27801664

ABSTRACT

mRNA vaccines are finally ready to assume their rightful place at the forefront of nucleic acid- based vaccines. Major achievements within the last two decades have turned this highly versatile molecule into a safe and very attractive pharmaceutical platform that combines many positive attributes able to address a broad range of diseases, including cancer. The simplicity of mRNA vaccines greatly reduces complications generally associated with the production of biological vaccines. Intrinsic costimulatory and inflammatory triggers in addition to the provision of the antigenic information makes mRNA an all- in-one molecule that does not need additional adjuvants and that does not pose the risk of genomic integration. Clinical studies in various cancer types are moving forward and promising results with favorable clinical outcome are awaited. This review will recapitulate conceptual, mechanistic and immune-related features of this highly versatile molecule, elucidate how these features have been addressed in the past, and how comprehensive understanding can foster further optimization for broad application possibilities in cancer treatment.


Subject(s)
Cancer Vaccines/immunology , Neoplasms/therapy , RNA, Messenger/genetics , Cancer Vaccines/genetics , Humans , Immunotherapy, Active/standards , Immunotherapy, Active/trends , RNA, Messenger/immunology
15.
Bioorg Med Chem Lett ; 27(7): 1530-1537, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28254484

ABSTRACT

We have previously demonstrated the nucleic acid binding capacity of phenanthridine derivatives (PHTs). Because nucleic acids are potent inducers of innate immune response through Toll-like receptors (TLRs), and because PTHs bear a structural resemblance to commonly used synthetic ligands for TLR7/8, we hypothesized that PHTs could modulate/activate immune response. We found that compound M199 induces secretion of IL-6, IL-8 and TNFα in human PBMCs and inhibits TLR3/9 activation in different cellular systems (PBMCs, HEK293 and THP-1 cell lines).


Subject(s)
Immunologic Factors/pharmacology , Phenanthridines/pharmacology , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 9/metabolism , Urea/analogs & derivatives , Urea/pharmacology , Cell Line , Down-Regulation , Humans , Intercalating Agents/pharmacology , Interferon-alpha/genetics , Interferon-alpha/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Oligodeoxyribonucleotides/pharmacology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
16.
Cancer Immunol Immunother ; 65(9): 1075-83, 2016 09.
Article in English | MEDLINE | ID: mdl-27422115

ABSTRACT

Intradermal administration of antigen-encoding RNA has entered clinical testing for cancer vaccination. However, insight into the underlying mechanism of RNA uptake, translation and antigen presentation is still limited. Utilizing pharmacologically optimized naked RNA, the dose-response kinetics revealed a rise in reporter signal with increasing RNA amounts and a prolonged RNA translation of reporter protein up to 30 days after intradermal injection. Dendritic cells (DCs) in the dermis were shown to engulf RNA, and the signal arising from the reporter RNA was significantly diminished after DC depletion. Macropinocytosis was relevant for intradermal RNA uptake and translation in vitro and in vivo. By combining intradermal RNA vaccination and inhibition of macropinocytosis, we show that effective priming of antigen-specific CD8(+) T-cells also relies on this uptake mechanism. This report demonstrates that direct antigen translation by dermal DCs after intradermal naked RNA vaccination is relevant for efficient priming of antigen-specific T-cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/metabolism , RNA/pharmacokinetics , Animals , Dendritic Cells/immunology , Female , Humans , Injections, Intradermal , Mice , Mice, Inbred C57BL , Pinocytosis , RNA/administration & dosage
17.
Hepatology ; 62(4): 1285-97, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26096209

ABSTRACT

UNLABELLED: Fibrosis accompanies the wound-healing response to chronic liver injury and is characterized by excessive hepatic collagen accumulation dominated by collagen type I. Fibrosis often progresses to cirrhosis. Here we present in vivo evidence of an up to 90% suppression of procollagen α1(I) expression, a reduction of septa formation, and a 40%-60% decrease of collagen deposition in mice with progressive and advanced liver fibrosis that received cationic lipid nanoparticles loaded with small interfering RNA to the procollagen α1(I) gene. After intravenous injection, up to 90% of lipid nanoparticles loaded with small interfering RNA to the procollagen α1(I) gene were retained in the liver of fibrotic mice and accumulated in nonparenchymal more than parenchymal cells for prolonged periods, significantly ameliorating progression and accelerating regression of fibrosis. CONCLUSION: Our lipid nanoparticles loaded with small interfering RNA to the procollagen α1(I) gene specifically reduce total hepatic collagen content without detectable side effects, potentially qualifying as a therapy for fibrotic liver diseases.


Subject(s)
Collagen Type I/genetics , Drug Delivery Systems , Liver Cirrhosis/therapy , Nanoparticles , RNA, Small Interfering/administration & dosage , RNAi Therapeutics , Animals , Collagen Type I, alpha 1 Chain , Liver Cirrhosis/genetics , Male , Mice , Mice, Inbred C57BL
18.
Macromol Rapid Commun ; 37(11): 924-33, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27075781

ABSTRACT

Messenger ribonucleic acids (mRNAs) are considered as promising alternatives for transient gene therapy, but to overcome their poor pharmacokinetic properties, smart carriers are required for cellular uptake and stimuli-responsive release. In this work, a synthetic concept toward reductive decationizable cationic block copolymers for mRNA complexation is introduced. By combination of RAFT block copolymerization with postpolymerization modification, cationic block copolymers are generated with disulfide-linked primary amines. They allow effective polyplex formation with negatively charged mRNA and subsequent release under reductive conditions of the cytoplasm. In first in vitro experiments with fibroblasts and macrophages, tailor-made block copolymers mediate cell-specific mRNA transfection, as quantified by polyplex uptake and mRNA-encoding gene expression. Furthermore, RAFT polymerization provides access to heterotelechelic polymers with orthogonally addressable endgroup functionalities utilized to ligate targeting units onto the polyplex-forming block copolymers. The results exemplify the broad versatility of this reductive decationizable mRNA carrier system, especially toward further advanced mRNA delivery applications.


Subject(s)
Drug Delivery Systems/methods , Polymers/chemistry , Polymers/pharmacology , RNA, Messenger/chemistry , RNA, Messenger/pharmacology , 3T3 Cells , Animals , Mice
20.
BMC Genomics ; 15: 190, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24621249

ABSTRACT

BACKGROUND: Tumor models are critical for our understanding of cancer and the development of cancer therapeutics. Here, we present an integrated map of the genome, transcriptome and immunome of an epithelial mouse tumor, the CT26 colon carcinoma cell line. RESULTS: We found that Kras is homozygously mutated at p.G12D, Apc and Tp53 are not mutated, and Cdkn2a is homozygously deleted. Proliferation and stem-cell markers, including Top2a, Birc5 (Survivin), Cldn6 and Mki67, are highly expressed while differentiation and top-crypt markers Muc2, Ms4a8a (MS4A8B) and Epcam are not. Myc, Trp53 (tp53), Mdm2, Hif1a, and Nras are highly expressed while Egfr and Flt1 are not. MHC class I but not MHC class II is expressed. Several known cancer-testis antigens are expressed, including Atad2, Cep55, and Pbk. The highest expressed gene is a mutated form of the mouse tumor antigen gp70. Of the 1,688 non-synonymous point variations, 154 are both in expressed genes and in peptides predicted to bind MHC and thus potential targets for immunotherapy development. Based on its molecular signature, we predicted that CT26 is refractory to anti-EGFR mAbs and sensitive to MEK and MET inhibitors, as have been previously reported. CONCLUSIONS: CT26 cells share molecular features with aggressive, undifferentiated, refractory human colorectal carcinoma cells. As CT26 is one of the most extensively used syngeneic mouse tumor models, our data provide a map for the rationale design of mode-of-action studies for pre-clinical evaluation of targeted- and immunotherapies.


Subject(s)
Carcinoma/genetics , Colonic Neoplasms/genetics , Transcriptome , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Carcinoma/immunology , Cell Line, Tumor , Colonic Neoplasms/immunology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred BALB C , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins p21(ras)/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL